Supporting Information

UV-Vis-NIR full-range responsive carbon-rich carbon nitride

nanotubes for enhanced photocatalytic performance

Fan Xu^{a,b}, Qi Yao^b, Yan Zhang^b, Zhao Mo^a, Junjie Yuan^a, Hanxiang Chen^a, Yanhua Song^c, Hongbing Ji^{d,*}, Huaming Li^a, and Hui Xu^{a,*}

^a Institute for Energy Research, Jiangsu University, Zhenjiang 212013, P.R. China

^b Academy of Environmental Planning & Design, Co., Ltd. Nanjing University, Nanjing 210093, P. R. China

^c School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

^d Huizhou Research Institute, Sun Yat Sen University, Huizhou 516081, P.R. China

*Corresponding author: E-mail addresses: jihb@mail.sysu.edu.cn (H. Ji); xh@ujs.edu.cn (H. Xu)

Photocatalytic activity measurements

Table S1. Comparison of apparent hydrogen evolution amounts of the reported R-CNand other the similar $g-C_3N_4$ based photocatalysts.

Photocatalyst	Light Source	Reaction Conditions	Hydrogen Evolution Rate (µmol g ⁻¹ h ⁻¹)	Ref.
R-CN	300 W Xe lamp, λ > 500 nm	3 wt% of Pt co-catalyst, TEOA (10%)	157.8	This work
Au NRs/g-C ₃ N ₄	$\lambda > 700 \text{ nm}$	TEOA	63.1	[1]
g-C ₃ N ₄ with nitrogen defects and cobalt-nitrogen (CoAN) bonds (g-C ₃ N ₄ -Co-K)	300 W Xe lamp, NIR	TEOA (15%)	470	[2]
black phosphorus/tungsten nitride (BP/WN)	320 W Xe $lamp, \lambda > 700$ nm	/	10.77	[3]
Protonated g-C ₃ N ₄ (pCN) was modified by pyropheophorbide-a (Ppa) Ppa/pCN	300 W Xe $lamp, \lambda > 780$ nm	3 wt% of Pt co-catalyst, TEOA (10%)	68.5	[4]
Protoporphyrin-modified pGCN (Pp/pGCN)	300 W Xe $lamp, \lambda > 780$ nm	3 wt% of Pt co-catalyst, TEOA (10%)	307.8	[5]
A ₂ BC-type asymmetric zinc phthalocyanine derivative (Zn- di- PcNcTh-2) g-C ₃ N ₄	300 W Xe lamp, $\lambda > 420$ nm	1 wt% of Pt co-catalyst, AA (50 mM)	23200	[6]
graphited carbon ring domain (CN-GP)	300 W Xe lamp, $\lambda =$ 700/800/900 nm	2 wt% of Pt co-catalyst, TEOA (10%)	560.8/398.4/322.8	[7]
carbon/potassium- doped red polymeric carbon nitride (RPCN)	300 W Xe $lamp,$ $500 \le \lambda \le 780$ $nm/$ $700 \le \lambda \le$ 780 nm	3 wt% of Pt co-catalyst, TEOA (10%)	640/140	[8]
graphitic carbon nitride by meso- tetrahydroxyphenylchlorin (mTHPC/pCN)	300 W Xe $lamp, \lambda > 780$ nm	3 wt% of Pt co-catalyst, TEOA (10%)	78.8	[9]
Black Phosphorus/Graphitic Carbon Nitride (BP/CN)	320 W Xe $lamp, \lambda > 780$ nm	/	101	[10]

References:

- H. Y. Tian, X. Liu, Z. Q. Liang, P. Y. Qiu, X. Qian, H. Z. Cui and J. Tian, Gold Nanorods/g-C₃N₄ Heterostructures For Plasmon-Enhanced Photocatalytic H₂ Evolution In Visible And Near-Infrared Light, *J. Colloid Interface Sci.*, 2019, 557, 700 - 708.
- [2] Y. J. Xue, S. C. Lu, Z. Q. Liang, Y. C. Guo, H. Z. Cui and J. Tian, Porous Graphitic Carbon Nitride With Nitrogen Defects And Cobalt-Nitrogen (Coan) Bonds For Efficient Broad Spectrum (Visible And Near-Infrared) Photocatalytic H₂ Production, *J. Colloid Interface Sci.*, 2020, **561**, 719 - 729.
- [3] S. Xu, S. Q. Gong, H. Jiang, P. H Shi, J. C. Fan, Q. J. Xu and Y. L. Min, Z-Scheme Heterojunction Through Interface Engineering For Broad Spectrum Photocatalytic Water Splitting, *Appl. Catal.*, *B*, 2020, 267, 118661.
- [4] F. Liu and Z. Ma, g-C₃N₄ Modified By Pyropheophorbide-a For Photocatalytic H₂ Evolution, *Colloids Surf.*, A, 2021, 615, 126128.
- [5] Y. F. Liu, S. F. Kang, L. F. Cui and Z. Ma, Boosting Near-Infrared-Driven Photocatalytic H₂ Evolution Using Protoporphyrin-Sensitized g-C₃N₄, J. *Photochem. Photobiol.*, A, 2020, **396**, 112517.
- [6] P. Zeng, J. M. Wang, Y. Y. Guo, R. J. Li, G. Q. Mei and T. Y. Peng,*Synthesis Of An A₂Bc-Type Asymmetric Zinc Phthalocyanine Derivative For Efficient Visible/Near-Infrared-Driven H₂ Evolution On g-C₃N₄, *Chem. Eng. J.*, 2019, **373**, 651 - 659.
- [7] T. Song, G. C. Zeng, P. Y. Zhang, T. T. Wang, S. B. Huang and H. P. Zeng, Ultrathin Carbon Nitride with Atomic-Level Intraplane Implantation of Graphited Carbon Ring Domain for Superior Photocatalytic Activity in the Visible/Near-Infrared Region, ACS Sustainable Chem. Eng., 2019, 7, 1239 - 1249.
- [8] Y. S. Xu, M. J. Fan, W. J. Yang, Y. H. Xiao, L. T. Zeng, X. Wu, Q. H. Xu, C. L. Su and Q. J. He, Homogeneous Carbon/Potassium-Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Near-Infrared Photocatalytic H₂ Production, *Adv. Mater.*, 2021, **33**, 2101455.

- [9] Y. F. Liu and Z. Ma, g-C₃N₄ Modified By Meso-Tetrahydroxyphenylchlorin For Photocatalytic Hydrogen Evolution Under Visible/Near-Infrared Light, *Frontiers in Chemistry*, 2020, 8, 605343.
- [10] M. S. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Y. Zhang, X. C. Wang and T. Majima, Metal-Free Photocatalyst for H₂ Evolution in Visible to Near-Infrared Region: Black Phosphorus/Graphitic Carbon Nitride, J. Am. Chem. Soc., 2017, 139, 13234 -13242.