High-voltage aqueous symmetric supercapacitor based on 3D

bicontinuous, highly-wrinkled, N-doped porous graphene-like

ultrathin carbon sheets

Boran Tao^{a,b,1}, Na Zhang^{c,1}, Tian Ye^{b,1}, Pengfei Gao^b, Hongda Li^{a,b}, Yuanmiao Xie^a, Jinghua

Liu^a, Guofu Wang^{a,*}, Wenfeng Zhang^b, Haixin Chang^{b,*}

^{*a*} Liuzhou key laboratory for new energy vehicle power lithium battery, School of

Microelectronics and Materials Engineering, Guangxi University of Science and Technology,

Liuzhou, 545006, China

^b Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and

Die & Mould Technology, School of Materials Science and Engineering, Huazhong

University of Science and Technology, Wuhan 430074, China

^c Yinchuan University of Science and Technology, Yinchuan 750011, China

¹ These authors contributed equally: Boran Tao, Na Zhang, Tian Ye

* Corresponding authors: gfwang@guet.edu.cn (Guofu Wang), hxchang@hust.edu.cn (Haixin Chang)

Fig. S1. Photographs of 3D BWGC sample

Fig. S2. (a) CV curves of 3D BWGC SCs in different electrolytes at scan rate of 5 mV/s. Galvanostatic discharge curve at different current density in the aqueous electrolytes of (b) 4 M MnSO₄, (c) 1.3 M CoSO₄, (d) 1.7 M Ni₂SO₄, and (e) 1 M $Al_2(SO_4)_3$. (f) Specific capacitances at different current densities.

Fig. S3. The Nyquist plots of 3D BWGC in 0.5 M MgSO₄ electrolytes.

Fig. S4. CV curves of 3D BWGC SCs in the aqueous electrolytes of: (a) 2 M MgSO₄, (b) 2 M MgSO₄ + 0.1 M Cr³⁺, (c) 2 M MgSO₄ + 0.05 M Fe²⁺ and (d) 2 M MgSO₄ + 0.1 M Cr³⁺ 0.05 M Fe²⁺.

Surface Area						
Single point surface area at P/Po =0.203237847:	2283.8366 m ² /g					
BET Surface Area:	2300.2504 m ² /g					
t-Plot Micropore Area:	680.0004 m ² /g					
t-Plot External Surface Area:	$1620.2500 \text{ m}^2/\text{g}$					
BJH Adsorption cumulative surface area of pores						
between 1.7000 nm and 300.0000 nm diameter:	476.621 m²/g					
BJH Desorption cumulative surface area of pores						
between 1.7000 nm and 300.0000 nm diameter:	1473.6203 m ² /g					
Pore Volume						
Single point adsorption total pore volume of pores	1 (22077)/					
less than 388.5776 nm diameter at P/Po = 0.995016548:	$1.632877 \text{ cm}^2/\text{g}$					
BJH Adsorption cumulative volume of pores	$0.726599 \text{ cm}^{2}/\text{g}$					
between 1.7000 nm and 300.0000 nm diameter:	C					
BJH Desorption cumulative volume of pores	$1.294348 \text{ cm}^2/\text{g}$					
between 1.7000 nm and 300.0000 nm diameter:						
Pore Size						
Adsorption average pore width (4V/A by BET):	2.83948 nm					
BJH Adsorption average pore diameter (4V/A):	6.0979 nm					
BJH Desorption average pore diameter (4V/A):	3.5134 nm					

Table S1.	BET	specific surface area,	pore volume and	pore size	of 3D BWGC.
-----------	-----	------------------------	-----------------	-----------	-------------

Electrolyte	Operating	Capacitance (F g ⁻¹) at different current density (A g ⁻¹)						·1)
	voltage (V)	0.5	1	2	3	5	10	20
MnSO ₄	1.9	197.5	163.4	138.3	127.4	112.4	92.2	67.2
MgSO ₄	1.8	244.2	205.1	185.1	172.2	161.2	145.1	130.2
$CoSO_4$	1.5	364.3	361.4	316.2	303.3	289.3	268.1	240.2
Ni_2SO_4	1.5	439.4	390.4	342.3	322.3	296.2	254.4	199.2
$Al_2(SO4)_3$	1.5	345.6	318.5	273.5	252.3	230.5	200.3	168.3

Table S2. Properties of 3D BWGC in different nature aqueous

	CC test at 0.5 A g ⁻¹			CC test at 10 A g ⁻¹			
Electrolyte	$C_s(F/g)$	E(Wh/kg)	P(W/kg)	$C_s(F/g)$	E(Wh/kg)	P(W/kg)	
MgSO ₄	244.2	109.9	450	145	62.3	9000	
MgSO ₄ +Cr ³⁺	215.8	97.1	450	102.8	46.2	9000	
MgSO ₄ +Fe ²⁺	317.2	142.8	450	183.9	82.8	9000	
MgSO ₄ +Cr ³⁺ + Fe ²⁺	347.8	156.5	450	158.9	71.5	9000	

Table S3. Comparison of specific capacitance (C_s) , energy density (E) and power density (P) of SCs with different electrolytes.