Supporting information

A practical route to Acridines framework from 2-nitrobenzaldehyde and cyclohexenone derivatives via aldol reaction and reductive cyclization

Rumpa Sarkar, ${ }^{\text {a }}$ Surya Kanta Samanta, ${ }^{\text {a }}$ Avantika Hasija, ${ }^{\text {b }}$ Deepak Chopra, ${ }^{\text {b }}$ Debabani Ganguly ${ }^{\text {c }}$ and Mrinal K. Bera ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Department of Chemistry
Indian Institute of Engineering Science and Technology (IIEST), Shibpur
PO- Botanic Garden, Howrah- 711103 (WB), India
${ }^{\mathrm{b}}$ Crystallography and Crystal Chemistry Laboratory, Department of Chemistry,
Indian Institute of Science Education and Research Bhopal, Bhopal- 462066, India
${ }^{\text {c }}$ Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS
University, Kolkata, India

Table of Contents

A. General methods S-2
B. General procedure for synthesis of product 3, 6, 7 S-3
C. X-ray Crystallographic Data S- 5
D. The details of docking study S-7
E. Analytical data S-10
F. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S-17

A. General methods:

All reactions were performed under an atmosphere of nitrogen in oven-dried flasks. TLC was performed using $100-200$ mesh silica gel plates. Column chromatography was performed using silica gel 100-200 mesh. TLC plates were visualized under UV light at 254 nm and iodine vapour. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker 400 MHz spectrometer and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 100 MHz spectrometer using CDCl_{3} as a solvent with TMS as the internal standard. The chemical shifts value at 7.26 and 77.0 ppm are referenced for CDCl_{3} solvent. The data of HRMS was carried out on a high-resolution mass spectrometer instrument. Melting points were measured with a Lab X India digital melting point apparatus and are uncorrected. X-ray structural analysis was conducted Bruker D8-Venture X-ray analysis instrument. All the commercial reagents were used from a different commercial source. DIPA, triethylamine, and ethanol were purified by using the traditional drying procedure.

B. Typical procedure for the synthesis of product 3:

An oven-dry 50 ml Round bottom flask was charged with dry Mg turnings (9.0 mmol) and solvent $(0.25 \mathrm{~N})$ in an inert atmosphere. A pinch of molecular iodine was then added to the solution which turned brown immediately. After that, bromobenzene (3.0 mmol) in solvent was added slowly to the reaction mixture and continued stirring for 30 min to prepare the Grignard reagent. Another dry 50 mL round bottom flask was charged with compound 1 (1.0 mmol) insolvent and $\mathrm{TiCl}_{4}(10.0 \mathrm{mmol} \%)$ was added at $0^{\circ} \mathrm{C}$.Then the prepared Grignard reagent was added to the solution and the resulting mixture was stirred for an hour. The progress of the reaction was monitored by thin-layer chromatography (TLC) analysis which was performed on silica gel $60 \mathrm{~F}_{254}$. After completion of the reaction, the reaction mixture was extracted with $10 \% \mathrm{HCl}$ solution and $\operatorname{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: pet ether/EtOAc $=3: 1$) to yield the desired product $\mathbf{3 a}$ as a yellow solid.

General procedure for Aldol reaction between cyclohexenone and 2-nitro benzaldehyde derivatives 6 :

An oven-dry 50 ml Round bottom flask was charged with solvent (0.5 N) and DIPA (2.0 $\mathrm{mmol})$ and stirred for $10-15 \mathrm{~min}$ at $-50^{\circ} \mathrm{C}$. Then base ${ }^{\mathrm{n}} \mathrm{BuLi}(2.25 \mathrm{mmol})$ was added to the solution and continued stirring for 30 min . After that, compound $\mathbf{3}$ in THF solvent was added to the resulting mixture and the mixture was stirred for another 30 min . Again the compound 4 (1.0 mmol) in dry THF solvent was added and the resulting reaction mixture was continued stirring for an hour at -50 to $0^{\circ} \mathrm{C}$. After completion of the reaction, the reaction mixture was extracted with sodium bicarbonate solution and Ethar $(3 \times 50 \mathrm{ml})$ The combined organic layer was washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: pet ether/EtOAc $=3: 1$) to yield the desired product $6 \mathbf{a}$ as a yellow solid.

Typical procedure for the synthesis of product 7:

In a dry 25 ml , round bottom flask $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (970 mg , 10.0 mmole) in methanol was charged at $0^{\circ} \mathrm{C}$ temperature and after $5-10 \mathrm{~min} \mathrm{NaBH}_{4}(169 \mathrm{mg}, 11.0 \mathrm{mmole})$ was added to the solution. Then the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for half an hour. After that, the compound $8 \mathbf{a}$ ($100 \mathrm{mg}, 1.0 \mathrm{mmole}$) which was dissolved in methanol, was added to the reaction mixture and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ to room temperature The progress of the reaction was monitored by thin-layer chromatography (TLC) analysis which was performed on silica gel $60 \mathrm{~F}_{254}$. After completion of the reaction, the reaction mixture was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and a short filtration column was performed. The combined organic layer was washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: pet ether/EtOAc $=3: 1$) to yield the desired product 7a as a yellow solid.

C. X-ray crystallographic data :

Single crystal X-ray Diffraction data were collected on Bruker APEX II diffractometer using monochromated Mo K_{α} radiation $(\lambda=0.71073 \AA$) at 100 K using an Oxford cryostream lowtemperature device. Unit cell measurements, data integration, scaling, and absorption corrections for the crystals were done with Bruker APEXII software. ${ }^{1}$ Data reduction was carried out with the Bruker SAINT suite. ${ }^{2}$ Absorption correction was performed by multiscan method, implemented in SADABS ${ }^{3}$. The structure was solved by direct methods using SIR 2014. ${ }^{4}$ The crystal structure refinement was done in the program package OLEX2 ${ }^{5}$ and all non-hydrogen atoms were refined anisotropically by full-matrix least-squares calculations based on F^{2} with SHELXL-2016 ${ }^{6}$, hydrogen atoms were included in calculated positions as riding atoms. The refinement of data has been performed with complete molecules in disorder (71:29). Additionally, restraints such as SIMU and RIGU have been implemented during structure refinement, to have a better-fitted model. The absolute structure could not be determined as the Flack parameter for the data is unreliable due to the presence of light scattering atoms in the molecule. The PARST^{7} was used for crystal structure analysis and Mercury 4.0^{8} was used for drawing molecular and crystal structure.

Table 1 : Checkcif data for 6 a

Bond precision: $\quad \mathrm{C}-\mathrm{C}=0.0071 \mathrm{~A}$		Wavelength $=0.71073$
Cell: $\quad \mathrm{a}=8$.	4) $\quad \mathrm{b}=8.309(4)$	$\mathrm{c}=9.834$ (5)
	$1.847(12 \text { beta=84.967(12) }$	gamma=61.229(12)
Temperature: 292 K		
	Calculated	Reported
Volume	587.1(5)	587.1(5)
Space group	P-1	P-1
Hall group	-P 1	-P 1
Moiety formula	C13 H13 N O4	.
Sum formula	C13 H13 N O4	$\begin{aligned} & \mathrm{C} 13 \mathrm{H} 13 \mathrm{~N} \\ & \mathrm{O} 4 \end{aligned}$
Mr	247.24	247.24

Table 2 : Checkcif data for 7b

CCDC NO 2048682

References:

1. Bruker (2014) APEX2, version 2014.11-0, Bruker AXS Inc., Madison, Wisconsin, USA.
2. Bruker (2013) SAINT, version V8.34A, Bruker AXS Inc., Madison, Wisconsin, USA.
3. Bruker (2014) SADABS, version 2014/5, Bruker AXS Inc., Madison, Wisconsin, USA.
4. Gruene, T.; Hahn, H. W.; Luebben, A. V.; Meilleur, F.; Sheldrick, G. M. Refinement of macromolecular structures against neutron data with SHELXL2013. J. Appl. Crystallogr.2014, 47 (1), 462-466.
5. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr.2009, 42, 339-341.
6. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst.2015, C71, 3-8.
7. Nardelli, M. PARST95 - an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J. Appl. Crystallogr.1995, 28, 659.
8. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr.2020, 53 (1), 226-235.

D. The details of docking study:

Method:

To check how the reported derivatives interact with DNA and also to check topoisomerase inhibitory activity we have used molecular docking method and calculate the binding affinity. X-ray crystal structure of the human topoisomerase I-DNA complex (PDB code: 1A35, resolution: 2.50£) [M.R. Redinbo, L. Stewart, P. Kuhn, J. J. Champoux, W. G. Hol, crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. SCIENCE, 279, 1504, 1998] has been downloaded from protein data bank (www.rcsb.org) to use as a model system for docking. The enzyme-DNA complex is used for both enzymederivatives and DNA-derivatives docking. To build the optimized 3D structure of the three derivatives (molecules 7d, 7j and 7m) Avogadro software package [Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, Eva Zurek and Geoffrey R Hutchison "Avogadro: An advanced semantic chemical editor, visualization, and analysis platform" Journal of Cheminformatics 2012, 4:17] has been used. AutoDock Vina [Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455], was used for docking and calculating the binding affinity of the best binding pose of the ligand. Three independent docking runs are performed for each complex.
7d

Figure: (a-c) Binding of derivatives $\mathbf{7 d}, \mathbf{7 j}$ and $\mathbf{7 m}$ at the topoisomerase I binding site. The derivatives molecules are show in ball and stick, enzyme is shown in cartoon.($\mathbf{f}-\mathbf{g}$) Binding lofderivatives $\mathbf{7 d}, \mathbf{7 j}$ and $\mathbf{7 m}$ at the DNA major and minor grooves.

Table 3:

Binding affinity calculated from AutoDock Vina. Three independent dockings are performed and standard errors are calculated.

Arcidine derivatives	Average binding affinity (kcal/mol)	
	Topoisomerase I	DNA
7 d	-6.05 ± 0.43	-6.07 ± 0.22
7 j	-5.7 ± 0.2	-6.07 ± 0.27
7 m	-6.0 ± 0.15	-6.5 ± 0.4

E. Analytical data:

5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3a): Yellow solid(550mg, yield 87\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{t}$, $\mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ 199.9, 159.8, 138.8,130.0, 128.7, 126.1, 125.4, 37.2, 28.1, 22.8. HRMS ESI (m/z): Calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 173.0922$, found 173.09928.

4'-methyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3b): Yellow solid(540 mg, yield 85\%) ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta(\mathrm{ppm}): 7.35(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}$, $1 \mathrm{H}), 2.68-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 200.0,159.7,140.4,135.8,129.5,126.0,124.6,37.2,28.0,22.8,21.3$. HRMS ESI (m / z): Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 187.1078$, found: 187.1086.

4'-methoxy-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3c): Yellow solid(500mg, yield 72%). ${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta(\mathrm{ppm}): 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H})$, 3.84(s, 3H), 2.77-2.72(m, 2H), 2.46(t, J=8.4Hz, 2H), 2.18-2.11(m, 2H). ${ }^{13}$ C NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 199.9,159.8,159.7,140.3,129.7,125.6,118.5,115.4,111.7,55.3,37.2$, 28.2, 22.8. HRMS ESI (m/z): Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 203.1027, found: 203.1030.

4'-butyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3d): Yellow liquid(510ml, yield 86\%). ${ }^{1} H$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta(\mathrm{ppm}): 7.46(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}$, $1 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 2 \mathrm{H})$, $1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 200.1, 159.8, 145.4, 135.9, 128.8, 126.0, 124.6, 37.2, 35.4, 33.4, 28.0, 22.8, 22.3, 13.9. HRMS ESI (m/z): Calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 229.1548$, found: 229.1560.

2', 3'-dimethyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3e): Yellow solid(480mg, yield $83 \%) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm}): 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}$, $1 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{t}, \mathrm{J}=7.5,2 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 199.6,164.6,141.1,137.5,132.3,129.8,128.6$, 125.6, 124.5, 37.3, 31.7, 23.1, 20.3, 16.7. Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 201.1235$, found: 201.1239 .

4'-ethyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3f): Yellow liquid(570 ml, yield 78\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm}): 7.47(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H})$, $2.76(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 2 \mathrm{H}), \quad 1.25(\mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 200.0,159.8,146.7,136.0,128.3$, 126.1, 124.7, 37.2, 28.6, 28.0, 22.8, 15.3. . Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 201.1235, found: 201.1241.

2'-methyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3g): Yellow solid(500mg, yield 80%). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta(\mathrm{ppm}): 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H})$, $2.59(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 199.6,163.6,140.7,133.9,130.6,128.6,128.3,126.9,125.9,37.3$, 31.2, 23.1, 20.0. Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 187.1078$, found: 187.1080.

2',4'-dimethyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3h): Yellow solid(530mg, yield 86%). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm}): 7.14(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 2.75(\mathrm{t}$,
$\mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.16-2.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 200.3,160.7,156.1,138.3,131.7,125.1,124.0,122.0,113.1,37.2,28.2$, 22.8, 21.3, 21.2. Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 201.1235$, found: 201.1237.

4'-(tert-butyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3i): Yellow liquid(560ml, yield $87 \%) .{ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta(\mathrm{ppm}): 7.49(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.44(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}).) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 200.1,159.7,153.6,135.7,126.3,125.9,125.7,124.7$, 114.8, 37.2, 34.8, 31.5, 31.1, 27.9, 22.8. Calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 229.1548$, found: 229.1550 .

3'-methyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3j): Yellow solid(550mg, yield 79\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta(\mathrm{ppm}): 7.27-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H})$, $2.69(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 2 \mathrm{H}){ }^{13}{ }^{\mathbf{C}} \mathbf{~ N M R}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 200.0,160.0,138.8,138.4,130.7,128.6,126.8,125.3,123.2,37.3$, 28.2, 22.8, 21.5. Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}:$187.1078, found: 187.1084.

1,2,3,4-tetrahydroacridine(7a): Yellow solid, (120 mg , yield 67%), mp. $85-95^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{j}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.95-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 2 \mathrm{H}){ }^{13}{ }^{\mathbf{C}}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 159.3,154.1$, 147.1, 137.1,135.1,133.0, 129.9, 126.9,125.9, 33.4, 29.2, 27.4, 23.3. HRMS ESI (m/z): Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 184.1082$, found:.184.1163.

3-phenyl-1,2-dihydroacridine (7b) : Yellow solid, (117 mg , yield 84%), mp $80-90^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}$, $\mathrm{J}=8.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.83(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 154.8,147.6$, 146.7, 140.0, 132.6, 129.0, 132.6, 128.8, 128.7, 128.5, 127.8, 127.0, 126.1, 125.9, 125.6, 28.0, 26.2. HRMS ESI (m/z): Calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 258.1238, found: 258.1297.

3-(p-tolyl)-1,2-dihydroacridine (7c): Yellow solid, (125 mg , yield 62%), mp 115-120 ${ }^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.99(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 4 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 158.7$, 154.7, 147.4, 146.6, 145.4, 139.9, 135.0, 132.6, 129.0, 128.7, 128.6, 126.9, 125.5, 41.0, 40.4, 30.3, 27.9, 26.1. HRMS ESI (m/z): Calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 272.1395$, found : 272.1459.

3-(4-methoxyphenyl)-1,2-dihydroacridine (7d): White solid (144 mg, yield 65\%), mp 125$130^{\circ}{ }^{\circ}$. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.99(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 160.1, 155.0, 147.3, 146.5, 132.6, 132.3, 129.0, 128.7, 128.4, 127.7, 126.9, 125.8, 124.1, 114.1, 55.4, 27.9, 26.1. HRMS ESI (m/z): Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 288.1344, found: 288.1419 .

3-(o-tolyl)-1,2-dihydroacridine (7e): Yellow solid, (150 mg , yield 62%), m.p $90-95^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=22.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~d}$, $\mathrm{J}=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}) 2.72(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, \mathrm{~J}=5.6,3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 150.7,147.2,142.4,137.4,133.4,132.9,129.3,128.9,128.8$, 128.6, 128.2, 127.8, 127.0, 125.9, 125.7, 125.6, 29.5, 28.2, 20.6, 17.1. HRMS ESI (m/z): Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 272.1395$, found: 272.1569.

3-(m-tolyl)-1, 2-dihydroacridine (7f): Yellow solid, (157 mg , yield 43%), m.p $80-90^{\circ} \mathrm{C}$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.00(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}$, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 194.0,154.8,147.5,146.8,139.9,138.1,135.7,135.1,132.5,129.2$, $129.0,128.7,128.6,128.5,127.7,126.9,126.3,125.8,125.8,122.7,116.3,116.0,27.9,26.1$, 21.5. HRMS ESI (m / z): Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+: 272.1395$, found : 272.1336.

3-(4-butylphenyl)-1,2-dihydroacridine (7g): Yellow solid, (200 mg , yield 55\%), mp 95$105^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.00(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.14(\mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.34$ $(\mathrm{m}, 2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 154.9,147.5,146.6$, 143.5, 137.1, 132.4, 129.0, 128.6, 126.9, 125.4, 125.2, 125.1, 35.4, 33.5, 27.9, 26.0, 22.4, 14.0. HRMS ESI (m/z): Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 314.1864, found : 314.1920.

3-(4-ethylphenyl)-1,2-dihydroacridine (7h) : Yellow solid, (250mg, yield 49\%), mp 85$90^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}$, $\mathrm{J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.14(\mathrm{t}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 154.9,147.4,146.7,144.8,137.2,132.5,129.0,128.6,128.5,128.1$, 126.9, 126.7, 125.7, 125.5, 125.0, 28.6, 27.9, 26.0, 15.4. HRMS ESI (m/z): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+: 286.1551$, found : 286.1595.

3-(2, 3-dimethylphenyl)-1,2-dihydroacridine (7i): Yellow solid, (200 mg, yield 67\%), mp $95-105^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.01(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 150.7,147.2,142.4,137.4,133.4,132.9,129.3,128.9,128.8$, 128.6, 128.2, 127.8, 127.0, 125.9, 125.7, 125.6, 29.5, 28.2, 20.6, 17.1. HRMS ESI (m/z): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+: 286.1519$, found : 286.1610.

7-methoxy-3-phenyl-1,2-dihydroacridine (7j): Yellow solid, (200 mg, yield 65\%), mp. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.90(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, 2 H), 7.41 (t, J=7.2Hz, 2H), 7.34 (d, J=7.2Hz, 1H), $7.28(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.01$ (s , 1 H), $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 157.5,152.6,145.3,140.1,131.6,130.0,129.4,128.6,128.6,128.2,125.4,120.9$, 105.2, 55.5, 28.0, 26.1. HRMS ESI (m/z): Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+: 288.1388$, found : 288.1414.

3-(2,4-dimethylphenyl)-1,2-dihydroacridine (7k) : Yellow liquid, (300 mg , yield 69%), mp. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.02(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, 1 H), 7.61 (t, J=7.2Hz, 1H), 7.44 (t, J=7.2Hz, 1H), 7.26 (d, J=8.0Hz, 3H), $7.00(\mathrm{~s}, 1 \mathrm{H}), 3.15$ $(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 5 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 154.8,147.6,147.1,139.9,138.1,135.4,132.9,130.3,129.2,128.9,128.2$, 128.1, 127.8, 127.7, 127.0, 125.9, 125.5, 125.2, 124.7, 123.6, 27.9, 26.2, 21.4. HRMS ESI $(\mathrm{m} / \mathrm{z})$: Calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 286.1596$, found : 286.1617.

3-(4-(tert-butyl) phenyl)-1,2-dihydroacridine (71): White solid, (250 mg , yield 79%), mp . ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta(\mathrm{ppm}): .8 .0(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-$ $2.87(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 155.0,151.8,147.6,146.5,137.0,132.5,129.1,128.7,128.7,127.7$, 127.0, 125.8, 125.6, 125.4, 125.3, 34.7, 31.3, 28.0, 36.1. HRMS ESI (m/z): Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+: 314.1909$, found: 314.1917.

7-fluoro-3-(m-tolyl)-1,2-dihydroacridine (7m): White solid, (170 mg, yield 43\%), mp.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm}): 8.00-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 161.5,159.0,154.4,146.9$, $144.5,139.9,138.3,130.1,129.4,128.6,126.4,125.6,122.7,118.7,118.5,110.4,110.2$, 28.0, 26.1, 21.6.HRMS ESI (m/z): Calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}[\mathrm{M}+\mathrm{H}]+: 290.1345$, found : 290.1344.

6-bromo-3-(4-(tert-butyl)phenyl)-1,2-dihydroacridine (7n): Yellow solid, (200 mg, yield $43 \%), \operatorname{mp} 70-75^{\circ}{ }^{\text {C }}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.00(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}$, $\mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.25-7.14(\mathrm{~m}$, $1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 3 \mathrm{H}), 3.29-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40-$ $1.34(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.91(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 158.8,154.9,147.4$, $143.5,142.6,140.9,137.1,134.9,132.4,128.5,128.3,126.9,126.6,125.4,125.1,41.0,40.0$, 30.4, 28.8, 26.0, 22.4, 13.9. HRMS ESI (m/z): Calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]+$: 392.1013, found: 392.0991

F. Copies of NMR Spectra :

5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3a):

\&

4'-methyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3b):

ले
Nべ
Nิ

4'-butyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one(3d):

N
$\underset{\sim}{0}$
\cdots
$\stackrel{\sim}{\infty}$
Nin No

2',3'-dimethyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3e):

-18
08
08
08

웅웅
Mr \ddagger on
ल్ల్ల~~o

4'-ethyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3f):

Jan11-2021.4.1.1r
©

2'-methyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3g):

2',4'-dimethyl-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3h):

4'-(tert-butyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (3i):

3＇－methyl－5，6－dihydro－［1，1＇－biphenyl］－3（4H）－one（3j）：

1,2,3,4-tetrahydroacridine (7a):

Feb04-2021.6.1.1r MKB-1-1(13C)

કํㅜํ
mウへ N

3-phenyl-1,2-dihydroacridine (7b):

3-(p-tolyl)-1,2-dihydroacridine (7c):

3-(4-methoxyphenyl)-1,2-dihydroacridine (7d):

3-(o-tolyl)-1,2-dihydroacridine (7e):

(a)

MKB_1M_16C

3-(m-tolyl)-1,2-dihydroacridine (7f):

MKB-1-97
25.02 .2020

3-(4-butylphenyl)-1,2-dihydroacridine (7g):

3-(4-ethylphenyl)-1,2-dihydroacridine (7h):

증ㅇ
Niが

3-(2,3-dimethylphenyl)-1,2-dihydroacridine (7i):

MKB_1M

$\begin{array}{llllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

7-methoxy-3-phenyl-1,2-dihydroacridine (7j):

3-(2,4-dimethylphenyl)-1,2-dihydroacridine (7k) :

MKB_1_99

3-(4-(tert-butyl)phenyl)-1,2-dihydroacridine (71):

7-fluoro-3-(m-tolyl)-1,2-dihydroacridine (7m):

