Supporting Information

Ru nanoparticles supported on alginate-derived graphene for the hydrogen evolution reaction

Laura Mallón,^{a, c} Christian Cerezo-Navarrete,^b Nuria Romero,^a Marta Puche,^b Jordi García-Antón,^a Roger Bofill,*^a Karine Philippot,*^c Luis M. Martínez-Prieto*^b and Xavier Sala*^a

Figure S1. TEM images of G (a-c) and P-G (d-f) supports.

Figure S2. HRTEM images, chosen expanded zone and corresponding Fourier Transform Analysis with planar reflections for Ru/P-G (a) and Ru/G (b).

Figure S3. Raman spectrum and I_D/I_G ratio of G (a) and Ru/G (b).

Figure S4. Raman spectrum and I_D/I_G ratio of P-G (a) and Ru/P-G (b).

Figure S5. XPS signal of the C 1s bands of **G** (a) and **P-G** (b), and the P 2p band of **P-G** (c). Deconvoluted peak component analysis is shown for each case (baseline as red curve.

Figure S6 FT-IR spectra of P-G (top; black) and Ru/P-G (bottom; red).

Figure S7. ³¹P MAS NMR spectra of a) **P-G** and b) **Ru/P-G**. Asterisks (*) mark the spinning side bands. The positions of phosphonate (7 ppm), phosphates (0 ppm), metaphosphonates (-7 ppm), phosphorous (-14 ppm) and polyphosphate (-22 ppm) are indicated on the zoomed part.

Figure S8. Representative multi CV experiment at different scan rates for C_{DL} determination of **Ru/G** (a) and **Ru/P-G** (c). Plot of current values at 0.25 V (vs. SCE) for the different scan rates in 1 M H₂SO₄ for **Ru/G** (b) and **Ru/P-G** (d).

Figure S9. Representative multi CV experiment at different scan rates for C_{DL} determination of **Ru/G-r** (a) and **Ru/P-G-r** (c). Plot of current values at 0.30 V and 0.25 V (*vs.* SCE) for the different scan rates in 1 M H₂SO₄ for **Ru/G-r** (b) and **Ru/P-G-r** (d), respectively.

Figure S10. TEM images and corresponding histogram of **Ru/G** after 2 h under catalytic conditions ($j = -10 \text{ mA/cm}^2$).

Figure S11. TEM images and corresponding histogram of **Ru/P-G** after 2 h under catalytic conditions ($j = -10 \text{ mA/cm}^2$).

Figure S12. TEM/EDX analysis of Ru/P-G after 2 h under catalytic conditions ($j = -10 \text{ mA/cm}^2$).

Table S1. Comparison of the most relevant graphene-derived and Ru/graphene-based HER nanoelectrocatalysts under acidic conditions. Parameters: mean diameter (\emptyset), onset overpotential (η_0 , mV), overpotential at $|j| = 10 \text{ mA} \cdot \text{cm}^{-2}$ (η_{10} , mV), Tafel slope (b, mV·dec⁻¹), exchange current density ($|j_0|$, mA·cm⁻²), specific current density ($|j_s|$, mA·cm⁻²) and turnover frequency (TOF, s⁻¹). Unless otherwise stated, electrolyte is 0.5 M H₂SO₄.

Entry	Catalyst	Ø	η_0	η_{10}	b	$ j_0 $	Ref.
		(nm)	(mV)	(mV)	$(mV \cdot dec^{-1})$	$(\mathrm{mA}\cdot\mathrm{cm}^{-2})$	
1	GCE-S-GNs-	30	≈ 60	80	61 (Tafel)	0.541	1
	1000-CB-Ru				71 (EIS)	0.431	
2	Ru-GLC	2-5	3	35	46	-	2
3	Ru ₂ P/RGO	<7	pprox 0	22	29	2.2	3
4	Ru@GnP	2	pprox 0	13	30	-	4
5	N-G	-	≈ 250	490	116	-	5
6	P-G	-	≈ 300	550	133	-	5
7	N,P-G	-	≈ 240	420	91	0.00024	5
8	N,B-CN	-	≈ 410	710	198	-	6
9	N-CN	-	≈ 400	620	159	-	6
10	N,P-CN	-	≈ 340	550	139	-	6
11	N,S-CN	-	≈ 100	290	77	-	6
12	N-G	-	499	-	405	86	7
13	N,P - G	-	399	-	565	265	7
14	P-G	-	536	-	348	76	7
15	P,N-G	-	247	380	126	21	7
16	VG	-	≈ 375	-	158	-	8
17	N-VG	-	≈ 200	290	121	-	8
18	Ru/NG-750	3-7	pprox 0	53	44	-	9
19	Ru@CN	2.37	≈ 70	126	-	-	10
20	Ru-NGA	3.5	≈ 15	55	32	-	11
21	Ru@NC	2.1	≈ 10	62	40	-	12
22	Ru/G-r	1.9	pprox 0	29	48	2.50	This
							work
23	Ru/P-G-r	1.5	pprox 0	15	49	4.97	This
							work

Legend: GCE-S-GNs-1000=glassy carbon modified sulfur-doped graphene nanosheets heat treated at 1000 °C, GLC=graphene-layered carbon, RGO=reduced graphene oxide, GnP=graphene nanoplatelets. N-G=N-doped graphene; P-G=P-doped graphene; N,P-G=N,P-doped graphene; N,B-CN=N,B-doped carbon nanosheets, N-CN=N-doped carbon nanosheets, N,P-CN=N,P-doped carbon nanosheets, N,s-CN=N,S-doped carbon nanosheets, P,N-G=P,N-doped graphene, VG=vertical graphene, N-VG=N-doped vertical graphene, Ru/NG-750= Ru nanoclusters on N-doped graphene prepared at 750 °C, Ru@CN=Ru NPs over N-doped carbon, Ru-NGA= Ru-modified N-doped graphene aerogel, Ru@NC= Ru NPs embedded in N-doped carbon.

References

- ¹ R. K. Shervedani and A. Amini, *Carbon* 2015, 93, 762-773.
- ² Z. Chen, J. Lu, Y. Ai, Y. Ji, T. Adschiri and L. Wan, ACS Appl. Mater. Interfaces 2016, 8, 35132-35137.
- ³ T. Liu, S. Wang, Q. Zhang, L. Chen, W. Hu and C.M. Li, Chem. Commun. 2018, 54, 3343-3346.
- ⁴ F. Li, G.F. Han, H.J. Noh, I. Ahmad, I.Y. Jeon and J.B. Baek, *Adv. Mater.* **2018**, 30, 1803676.
- ⁵ Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec and S.Z. Qiao, *ACS Nano* **2014**, 8, 5, 5290-5296.
- ⁶ K. Qu, Y. Zheng, X. Zhang, K. Davey, S. Dai and S.Z. Qiao, ACS Nano 2017, 11, 7293-7300.
- ⁷ Y.H. Hung, D. Dutta, Y.J. Tseng, J.K. Chang, A.J. Bhattacharyya and C.Y. Su, *J. Phys. Chem. C* **2019**, 123, 22202-22211.
- ⁸ Y. Li, C. Ai, S. Deng, Y. Wang, X. Tong, X. Wang, X. Xia and J. Tu, *Materials Research Bulletin* **2021**, 134, 111094.
- ⁹ R. Ye, Y. Liu, Z. Peng, T. Wang, A.S. Jalilov, B.I. Yakobson, S.H. Wei and J.M. Tour, *ACS Appl. Mater. Interfaces* **2017**, 9, 3785-3791.
- ¹⁰ J. Wang, Z. Wei, S. Mao, H. Li and Y. Wang, *Energy Environ. Sci.* 2018, 11, 800–806.
- ¹¹ Y. Shi, W. Dai, M. Wang, Y. Xing, X. Xia and W. Chen, *Chem. Res. Chinese Universities*, **2020**, 36 (4), 709-714.
- ¹² B. Zheng, L. Ma, B. Li, D. Chen, X. Li, J. He, J. Xie, M. Robert and T.C. Lau, *Catal. Sci. Technol.* 2020, 10, 4405-4411.