Supporting Information

A novel luminescence phosphor of metal-organic framework with

orange-red emission

Wei Meng $^{a,\,\dagger},$ Lin Sun $^{b,\,\dagger},$ Yuhao Long $^{a},$ Qianping Wang $^{a},$ Lian Zhou $^{a,\,\ast},$ Jun Zhang $^{a,\,c,\,\ast}$

^a State Key Laboratory of Plateau Ecology and Agriculture, New Energy Photovoltaic Industry Research Center, Qinghai University, Xining 810016, P. R. China

^b Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal
 Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan
 475004, P. R. China.

^c School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China

[†] These authors contributed equally to this work.

* Corresponding authors (emails: zhoulianminai@126.com (L. Zhou); zhangjun@ahjzu.edu.cn (J. Zhang))

2. Experimental section

1. Synthesis:

A suspension of $Zn(NO_3)_2 \cdot 6H_2O(0.1 \text{ mmol}, 0.34 \text{ g})$, 4,4'-((1E,1'E)-(2,5-dibutoxy-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine (abbreviated as DPBD, 0.01 mmol, 0.043g) and 2,5-dichloroterephthalic acid (abbreviated as H₂DBTT, 0.01 mmol, 0.047g) in 3 mL of DMF/H₂O (3:1, v/v) and a drop of HCl (2 mol/L) was sealed in a 10 mL Teflon-lined stainless steel autoclave and heated under autogenous pressure at 100°C for 72 h. After the autoclave was cooled to room temperature, orange block single crystals suitable for single-crystal X-ray crystallographic analysis were obtained. The resulting crystals were rinsed three times with DMF and dried at room temperature overnight for further characterization. Yield: 14.1 mg (13.2% based on DPBD). The phase purity was confirmed by powder X-ray diffraction (Figure S1 in Supporting Information).

2. Characterization

Thermogravimetric analysis (TGA) was checked on a Perkin-Elmer thermal analyzer under nitrogen with a heating rate of 10°C/min. Powder X-ray diffraction (PXRD) patterns were carried out on a Bruker D8 Advance instrument using Cu K α radiation at room temperature (2 θ = 5–50°, 0.1 s/deg). The photoluminescent spectra was executed on an Agilent Cary Eclipse Fluorescence spectrophotometer.

3. Crystallographic Data

A suitable single crystal of compound **1** was selected to carry out single-crystal Xray diffraction data by a Bruker D8 venture diffractometer, using a photon CMOSdetector and graphite-monochromated Mo-Ka radiation (0.71073 Å) at room temperature. After collection, the data reduction and absorption correction were executed by the SAINT ¹ and SADABS ² subprograms of APEX3 ³ software package, respectively. Then, the structures were solved by dual space method using SHELXT ⁴ routine, and further refined by SHELXL ⁵ subprogram by full-matrix least squares on F^2 under Olex2 ⁶ program. All the hydrogen atoms were resided at their ideal geometric positions by theoretical calculation and refined isotropically using a riding model, and all non-hydrogen atoms were refined anisotropically. Summary of structural parameters and crystal data of compound **1** were given in Tables S1 to S3. Crystallographic data were deposited in the Cambridge Crystallographic Data Centre (CCDC No. 2114789).

Figure S1. Powder X-ray diffraction (PXRD) patterns of compound 1.

Figure S2. The UV-vis diffuse reflection spectra of compound 1 and free ligands of H₂DBTT and DPBD.

Figure S3. Fluorescence lifetimes of compound 1 derived from a least-square fit using double exponential function with internal reference.

Figure S4. The calculated molecular orbitals of compound 1 drawn by Multiwfn ^{7, 8} programs.

Empirical formula	$C_{78.20} H_{71.55} Cl_{5.55} N_{4.45} O_{18.45} Zn_4$		
Formula weight	1827.15		
Temperature	153.15 K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 12.662(2) Å	$\alpha = 90.626(3)^{\circ}.$	
	b = 13.459(2) Å	β=96.747(3)°.	
	c = 24.432(4) Å	$\gamma = 112.981(3)^{\circ}.$	
Volume	3799.3(10) Å ³		
Z	2		
Density (calculated)	1.597 Mg/m ³		
Absorption coefficient	1.518 mm ⁻¹		
F(000)	1868		
Crystal size	0.15 x 0.14 x 0.11 mm ³		
Theta range for data collection	1.647 to 26.433°.		
Index ranges	-12<=h<=15, -16<=k<=16, -30<=l<=30		
Reflections collected	21198		
Independent reflections	15215 [R(int) = 0.0388]		
Completeness to theta = 25.242°	98.0 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.7454 and 0.6057		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	15215 / 650 / 1101		
Goodness-of-fit on F ²	0.927		
Final R indices [I>2sigma(I)]	R1 = 0.0615, wR2 = 0.1445		
R indices (all data)	R1 = 0.1267, wR2 = 0.1746		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.367 and -0.752 e.Å ⁻³		

 Table S1.
 Crystal data and structure refinement for compound 1:.

 Table S2.
 Bond lengths [Å] and angles [°] for compound 1:.

Zn(1)-O(2)	1.927(3)
Zn(1)-O(3)	1.986(5)
Zn(1)-O(5)	1.983(4)
Zn(1)-O(19)	2.53(2)
Zn(1)-O(23)	1.989(10)
Zn(1)-N(4)	2.015(4)
Zn(2)-O(2)	1.992(3)
Zn(2)-O(2)#1	2.275(3)
Zn(2)-O(13)#2	2.065(4)
Zn(2)-O(14)	2.141(5)
Zn(2)-O(16)#2	2.326(4)
Zn(2)-O(24)	2.042(10)
Zn(2)-N(1)#3	2.095(4)
Zn(3)-O(1)	1.978(3)
Zn(3)-O(1)#4	2.369(4)
Zn(3)-O(7)	2.014(4)
Zn(3)-O(9)	2.513(4)
Zn(3)-O(18)	2.100(5)
Zn(3)-O(22)	2.024(9)
Zn(3)-N(3)#5	2.058(4)
Zn(4)-O(1)	1.930(3)
Zn(4)-O(6)	1.997(5)
Zn(4)-O(8)	1.964(4)
Zn(4)-O(15)	2.580(4)
Zn(4)-O(21)	2.005(9)
Zn(4)-N(2)	2.019(5)
O(2)-Zn(1)-O(3)	115.8(2)
O(2)-Zn(1)-O(5)	113.98(16)
O(2)-Zn(1)-O(19)	83.2(4)
O(2)-Zn(1)-O(23)	108.5(10)
O(2)-Zn(1)-N(4)	109.33(16)
O(5)-Zn(1)-O(3)	107.9(3)
O(5)-Zn(1)-O(19)	54.1(3)
O(5)-Zn(1)-O(23)	114.8(14)
O(5)-Zn(1)-N(4)	105.20(17)
O(2)-Zn(2)-O(2)#1	77.59(13)
O(2)-Zn(2)-O(13)#2	153.63(16)

O(2)-Zn(2)-O(14)	95.3(3)
O(2)#1-Zn(2)-O(16)#2	79.19(15)
O(2)-Zn(2)-O(16)#2	96.43(15)
O(2)-Zn(2)-O(24)	94.8(13)
O(2)-Zn(2)-N(1)#3	106.84(16)
O(1)-Zn(3)-O(1)#4	77.49(13)
O(1)-Zn(3)-O(7)	152.86(16)
O(1)#4-Zn(3)-O(9)	70.72(13)
O(1)-Zn(3)-O(9)	97.27(13)
O(1)-Zn(3)-O(18)	97.7(3)
O(1)-Zn(3)-O(22)	94.1(8)
O(1)-Zn(3)-N(3)#5	103.53(17)
O(1)-Zn(4)-O(6)	111.1(3)
O(1)-Zn(4)-O(8)	124.10(16)
O(1)-Zn(4)-O(15)	85.34(14)
O(1)-Zn(4)-O(21)	108.2(8)
O(1)-Zn(4)-N(2)	103.92(16)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1 #2 x+1,y,z+1 #3 x+1,y-1,z #4 -x+1,-y+1,-z #5 x,y-1,z-1 #6 -x+1,-y,-z+1 #7 -x,-y,-z #8 x-1,y,z-1 #9 x-1,y+1,z #10 x,y+1,z+1

Table S3.	Hydrogen bonds for compound 1:	[Å and °].
	,	[].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(1)-H(1A)O(7)#10	0.95	2.56	3.168(7)	122.0
C(5)-H(5)O(15)#10	0.95	2.49	3.346(7)	149.7
C(22)-H(22)O(16)#2	0.95	2.49	3.416(7)	163.5
C(49)-H(49)O(9)	0.95	2.48	3.397(6)	163.6
C(54)-H(54)O(6)#11	0.95	2.43	3.311(10)	153.9
C(70)-H(70)O(13)#10	0.95	2.48	3.110(7)	123.8
C(71)-H(71)O(17)#9	0.95	2.33	3.253(8)	164.2
C(71)-H(71)O(19)#9	0.95	2.58	3.417(15)	147.4

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1 #2 x+1,y,z+1 #3 x+1,y-1,z

```
#4 -x+1,-y+1,-z #5 x,y-1,z-1 #6 -x+1,-y,-z+1
#7 -x,-y,-z #8 x-1,y,z-1 #9 x-1,y+1,z #10 x,y+1,z+1
#11 -x,-y+1,-z
```

References:

- 1. Bruker, *SAINT*, Bruker AXS Inc., Madison, Wisconsin, USA, 7.68 A edn., 2009.
- 2. Bruker, *SADABS*, Bruker AXS Inc., Madison, Wisconsin, USA, 2008/1 edn., 2008.
- 3. W. Madison, *Bruker APEX2 software*, Bruker AXS Inc., Fitchburg, WI, 2.0 1 edn., 2015.
- 4. G. M. Sheldrick, Acta Crystallogr. A Found. Crystallogr., 2015, 71, 3-8.
- 5. G. M. Sheldrick, Acta Crystallogr. C Struct. Chem., 2015, 71, 3-8.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 7. T. Lu and F. Chen, *Acta Chim. Sinica*, 2011, **69**, 2393-2406.
- 8. M. Xiao and T. Lu, J. Adv. Phys. Chem., 2015, 04, 111-124.