Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

9-Nitrobenzo[*b*]quinolizinium as Fluorogenic Probe for the Detection of Nitroreductase *in vitro* and in *Escherichia coli*

Peter Jonas Wickhorst, Heiko Ihmels, Melanie Marianne Lammert-Baumgartner, Mareike Müller, and Holger Schönherr

(submitted to New J. Chem.)

Electronic Supporting Information

Table of Contents

1. Equipment	S2
2. Materials	S2
3. Synthesis	S3
4. Determination of fluorescence quantum yields	S4
5. Calculation of theoretical absorption spectra	S5
6. Spectrometric measurements	S6
7. Fluorimetric analysis of bacteria	S9
8. Toxicity testing	S11
9. NMR spectra	S12
10. References	S13

1. Equipment

Absorption spectra: Analytik Jena Specord S600 spectrophotometer and Varian Cary 100 Bio spectrophotometer with baseline correction. Emission spectra: Varian Cary Eclipse spectrophotometer at 20 °C: Cuvettes: Quartz cells (10 mm x 4 mm). NMR spectra: Jeol ECZ 500 (¹H: 500 MHz, ¹³C: 125 MHz) at 25 °C (DMSO-*d*₆). NMR spectra were processed with the software MestReNova and referenced to the residual solvent signal of DMSO-*d*₅ (¹H: δ = 2.50, ¹³C: δ = 39.5). Elemental analyses data: HEKAtech EUROEA combustion analyser, by Rochus Breuer, Organische Chemie I, Universität Siegen. Melting points (uncorrected): BÜCHI 545 (BÜCHI, Flawil, CH), Tecan Reader Safire (Männedorf, Switzerland)

2. Materials

9-Nitrobenzo[*b*]quinolizinium perchlorate (**1b**),^[1] 2-(4-nitrostyryl)quinolizinium tetrafluoroborate (**2**)^[2] and benzo[*b*]quinolizinium-9-boronic acid bromide (**5**)^[3] were prepared according to published procedures.^[1] Nitroreductase from *Escherichia coli* (>100 units/mg), β-nicotinamide adenine dinucleotide, as disodium salt hydrate, and 4-nitroiodobenzene (**6**) were purchased from SigmaAldrich (St. Louis, USA). All solutions were prepared in PBS buffer (10 mM Na₂HPO₄, 1.8 mM KH₂PO₄, 2.7 mM KCl, 137 mM NaCl)., Tris-HCl buffer (dilution from 1 M Tris-HCl stock buffer, pH 8.5 from jenabioscience 0.05 M and titration with HCl to pH 7.4), LB-agar (Lysogeny broth agar, Luria/Miller, Carl Roth, Karlsruhe, Germany), LB (Lysogeny broth, Luria/Miller, Carl Roth, Karlsruhe, Germany). All buffer solutions and media were prepared from purified water (resistivity 18 MΩ cm) and biochemistry-grade chemicals. The buffer solutions were filtered through a PVDF membrane filter (pore size 0.45 µm) prior to use.

3. Synthesis

The novel compound **1d** was synthesized by a Suzuki-Miyaura coupling reaction according to published standard procedure for benzo[*b*]quinolizinium derivatives.^[3]

Scheme S1. Synthesis of 9-(4-nitrophenyl)benzo[*b*]quinolizinium (1d).

9-(4-Nitrophenyl)benzo[b]quinolizinium (1d).

A mixture of benzo[b]quinolizinium-9-boronic acid bromide (5) (152 mg, 500 µmol), 4nitroiodobenzene (6) (156 mg, 625 µmol), Pd(dppf)Cl₂·CH₂Cl₂ (20 mg) and KF (116 mg, 2.00 mmol) in DME/water/MeOH (2:1:1, 6 ml) was stirred for 4 h at 85 °C under argon gas atmosphere. After cooling to r.t. the reaction mixture was diluted with MeOH (20 ml) and filtered, and aq. NaBF₄ solution (sat. 1.0 ml) was added to the filtrate. The precipitate was filtered off and the crude solid product was purified by column chromatography (SiO₂; CH₂Cl₂/MeOH, 9:1 v/v) to give product **1d** as red amorphous solid (19.4 mg, 50.0 µmol, 10%); mp 291–293 °C. – ¹H NMR (500 MHz, DMSO-*d*₆): 8.00 (dt, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 1H, 3-H), 8.12 (s, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 1H, 2-H), 8.29 (d, ${}^{3}J = 9$ Hz, 2H, 3'-H, 5'-H), 8.43 (d, ${}^{3}J = 9$ Hz, 1H, 8-H), 8.46 (d, ${}^{3}J = 9$ Hz, 2H, 2'-H, 6'-H), 8.63 (d, ${}^{3}J$ = 9 Hz, 1H, 7-H), 8.66 (d, ${}^{3}J$ = 9 Hz, 1H, 1-H), 8.86 (s, 1H, 10-H), 9.26 (s, 1H, 11-H), 9.31 (d, ${}^{3}J$ = 7 Hz, 1H, 4-H), 10.46 (s, 1H, 6-H). – ${}^{13}C$ NMR (125 MHz, DMSO- d_{6}): δ = 122.6 (C6a), 124.4 (C2', C6') 125.3 (C10), 125.5 (C11), 127.0 (C1), 129.1 (C3', C5'), 129.2 (C3), 129.3 (C7), 130.1 (C8), 131.5 (C2), 134.6 (C4), 135.4 (C10a), 138.0 (C11a), 140.2 (C6), 142.8 (C9), 144.1 (C4'), 147.9 (C1'). - El. Anal. for C₁₉H₁₃BF₄N₂O₂ x 0.5 H₂O, calc. (%): C 57.46, H 3.55, N 7.05 found (%): C 57.01, H 3.25, N 6.76.

4. Determination of fluorescence quantum yields

Solutions were prepared for each measurement as described above from stock solutions of **1b** in MeCN (c = 1.0 mM). For the detection of fluorescence spectra, the excitation and emission slits were adjusted to 5 nm, and the excitation wavelengths were fixed to 415 nm. The relative fluorescence quantum yields of **1b** were determined under identical conditions (detection wavelength, excitation wavelength, detector voltage, slit bandwidths, collection rate). The quantum yield, Φ_{fl} , was determined according to equation 1.

$$\boldsymbol{\Phi}_{\mathrm{fl}, \mathrm{X}} = \frac{F_{\mathrm{X}}A_{\mathrm{S}}}{F_{\mathrm{S}}A_{\mathrm{X}}} \cdot \frac{n_{\mathrm{X}}^{2}}{n_{\mathrm{S}}^{2}} \cdot \boldsymbol{\Phi}_{\mathrm{fl}, \mathrm{S}}$$
(eq. 1)

The indices X and S indicate the analyte (X) and standard (S) solution.

 ϕ = Emission quantum yield.

F = Integral of the emission curve.

A = Absorbance at the excitation wavelength.

n = Refraction index of the solution.

Measurements were performed with coumarin 153 in ethanol as standard ($\phi_{fl} = 0.544$).^[4]

The estimated error is ca. 10% of the given values.

5. Calculation of theoretical absorption spectra

The optimized structure, transition energies, as well as the corresponding oscillator strengths were obtained from time dependent DFT calculations [O3LYP]^[5] with def2-TZVP as basis set for an aqueous solution of **4** (Figure S1, Table S1). Solvent properties were simulated with the polarized continuum model (PCM).^[5] The calculations were performed with ORCA Software.^[6] The input files for ORCA and plots of molecular orbitals were generated with Avogadro.^[7]

Figure S1. Optimized structure (A) and plots of the molecular orbitals of the HOMO (B) and LUMO (C) of compound 4.

Transition	λ / nm	f
$S_0 \rightarrow S_1$	478	0.08
$S_0 \rightarrow S_2$	338	0.17
S ₀ →S ₃	334	0.35
$S_0 \rightarrow S_4$	283	0.06
S₀→S₅	247	0.01
$S_0 \rightarrow S_6$	245	0.03
$S_0 \rightarrow S_7$	236	0.20
S₀→S₅	236	0.28
S₀→S ₉	229	0.04
$S_0 \rightarrow S_{10}$	222	0.01

Table S1. Wavelength, λ and oscillator strength, *f*, of the first 10 electronic transitions of derivative **4**.

6. Spectrometric measurements

The absorption, emission and CD spectra were determined according to published procedures.^[8,9]

Figure S2. Absorption before (solid) and after (dashed) reaction of probe **1d** (black) and **2** (red, c = 10 μ M) with nitroreductase (5 μ g/ml) and NADH (50 μ M) in PBS buffer (pH = 7, T = 37 °C) for 40 min; λ_{ex} = 400 nm.

Figure S3. Relative emission intensity after incubation of **1b** (10 μ M) with nitroreductase (5 μ g/ml) and NADH (50 μ M) for 40 min in PBS buffer at different pH (A, *T* = 37 °C) and different temperatures (B, pH = 7); λ_{ex} = 415 nm.

Figure S4. A: Normalized emission (red) and excitation spectrum (black) after incubation of probe **1b** (*c* = 10 μ M) with nitroreductase (5 μ g/ml) and NADH (50 μ M) in PBS buffer (pH = 7, *T* = 37 °C) for 40 min; λ_{ex} = 415 nm, λ_{fl} = 520 nm. B: Plot of the fluorescence intensity at 490 nm versus nitroreductase concentration after incubation for 60 min. The red line represents the best fit to the theoretical model.

Figure S5. A: CD spectra after incubation of probe **1b** ($c = 10 \mu$ M) with NADH (50 μ M) and nitroreductase (5 μ g/ml) for 0 min (black), 40 min (blue) and 80 min (red). B: Change of the emission after incubation of probe **1b** ($c = 10 \mu$ M) with nitroreductase (5 μ g/ml) and NADH (50 μ M) in PBS buffer (pH = 7, T = 37 °C) for 40 min before (black) and after incubation with acetamide (100 μ M) for 16 h (red); $\lambda_{ex} = 415$ nm. The arrows indicate changes of the absorption (A) and emission (B) with increasing reaction time.

Figure S6. A: Normalized emission (dashed) and excitation spectrum (bold) of 9-aminobenzo-[*b*]quinolizinium (**1c**, black) and after incubation of probe **1b** (*c* = 10 µM) with nitroreductase (5 µg/ml) and NADH (50 µM) in PBS buffer (pH = 7, *T* = 37 °C) for 40 min and subsequent storage of the isolated product under aerobic conditions for one day; $\lambda_{ex} = 415$ nm, $\lambda_{fl} = 515$ nm. B: Excitation spectrum after reduction of probe **1b** (red, *c* = 10 µM) by nitroreductase and predicted absorption spectrum of the proposed product **4** (black); $\lambda_{fl} = 520$ nm. C: Emission spectrum after reduction of probe **1b** by nitroreductase (red) and NaBH₄ (black); $\lambda_{ex} = 415$ nm.

Figure S7. Change of the emission during the reaction of probe **1b** [$c_{1b} = 2.5 \,\mu$ M (A), $c_{1b} = 5 \,\mu$ M (B)] with nitroreductase (5 μ g/ml) and NADH (50 μ M) in PBS buffer (pH = 7, $T = 37 \,^{\circ}$ C); $\lambda_{ex} = 415 \,$ nm. The arrows indicate the changes of emission with increasing reaction time. Inset: Plot of the probe emission at 493 nm *versus* reaction time.

Figure S8. Absorption spectra of derivatives **1b** (A) and **1c** (B) in PBS buffer (pH = 7, T = 37 °C) before (black) and after (red) irradiation for 30 min with blue light (λ = 420 nm).

7. Fluorimetric analysis of NRT activity in live bacteria

The NTR activity was conducted according to the procedure described before by Brennecke et al.^[10] As a test the nonpathogenic *Escherichia coli* W (ATCC9637) derivative Mach1[™] (T1 Phage-resistant, chemical competent, purchased form Invitrogen, USA) was used.^[11] E. coli colonies from Luria-Bertani (LB) agar plate were transferred to 5 ml LB for overnight cultures (16-20 h) at 37 °C and 200 rpm. The bacteria were harvested by centrifugation and the resulting pellet was washed by addition of 0.05 M Tris-HCl buffer (pH 7.4) with equal volume compared to the harvested culture. This washing step was repeated a second time and the bacterial pellet finally resuspended in less than half of the initial volume 0.05 M Tris-HCl buffer in order to adjust the optical density (OD) of the bacterial suspension to $OD_{600} \approx 2.0$ (Figure S8A und C) or dilute the suspension further with Tris-HCl buffer to $OD_{600} \approx \text{ of } 0.2$ (Figure S8B) and Fig 4). The adjusted bacterial suspension was distributed in transparent 6 well plates (Sarstedt, Nümbrecht, Germany) a 2 ml and in addition to untreated control conditions the probe 1b (stock concentration 10 mM in DMSO) was diluted 500-fold to a final concentration of 20 µM in the bacterial culture and incubated for 4 h or 24 h at 120 rpm and 37 °C.

150 µl of these cultures have been transferred to 96 well plates (black, flat bottom, media binding, Sarstedt, Nümbrecht, Germany) for fluorimetric analysis with a multimode microplate reader (Tecan Safire, monochromator) at timepoints 0 h, 4 h, 24 h. 96well plates were sealed with transparent microplate sealing foil (AMPLISEAL, Greiner

Bio-One, Frickenhausen, Germany) and all experimental conditions were performed in technical replicates.

Pictures of fluorescence light-up of bacterial cultures incubated with 20 μ M probe **1b** for 4 h in the 6 well plates (Fig 4A) have been documented via an in house built black box equipped with 365 nm LED lights.

Figure S9. Relative emission intensity of *E. coli* cultures with an optical density of $OD_{600} = 2$ (A) and $OD_{600} = 0.2$ (B) before (red) and after incubation with **1b** ($c = 20 \mu$ M) in Tris-HCl buffer for 4 h (green) and 24 h (blue) and the relative emission intensity of a pure solute of **1b** (, $c = 20 \mu$ M) in Tris-HCl buffer (black); $\lambda_{ex} = 399$ nm. C: Normalized emission (bold) and excitation spectrum (dashed) of 9-aminobenzo[*b*]quinolizinium (**1c**, red; $\lambda_{ex} = 415$ nm, $\lambda_{fl} = 515$ nm) and after incubation of *Escherichia coli* cell cultures (OD600 = 2) with **1b** ($c = 20 \mu$ M) in TRIS- buffer for 24 h (black; $\lambda_{ex} = 399$ nm, $\lambda_{em} > 460$ nm).

8. Toxicity testing

E. coli Mach1TM cultures were harvested as described in section 7 by centrifugation and adjusted to an $OD_{600} \approx$ of 0.2, re-suspended in 0.05 M Tris-HCl buffer (pH 7.4) with or without the probe **1b** (20 µM) and incubated 4 h or 24 h at 120 rpm and 37 °C. Subsequently, the bacteria suspensions were collected followed by the determination of the concentration of viable bacteria by CFU plate counting method. Suspensions were diluted serially up to 10^5 fold and 10^6 fold. Droplets of 50 µL were plated in duplicates onto LB agar plates and visible and colonies (CFUs) were counted after 24 h incubation at 37 °C.

Figure S10. Determination of colony forming units (CFU) / ml as measure for the viability of *E. coli* cultures with an optical density of $OD_{600} = 0.2$ incubated in either Tris-HCl buffer (Buffer-Ctr) or probe **1b** (c = 20 µM) in Tris-HCl buffer at incubation starting time (0 h), 4 h or 24 h at 37 °C. Error bars indicate standard deviation (SD) of of the mean of at least 3, and max. 4 technical replicates of CFU counts.

8. NMR Spectra

Figure S11. ¹H NMR spectrum (500 MHz) of derivative **1d** in DMSO-*d*₆.

Figure S12. ¹³C NMR spectrum (125 MHz) of derivative 1d in DMSO-*d*₆.

Figure S13. ¹H NMR spectrum (500 MHz) of derivative **1b** in DMSO-*d*₆.

9 References

- [1] C. K. Bradsher and J. C. Parham, J. Heterocycl. Chem., 1964, 1, 30.
- [2] S. Kölsch, H. Ihmels, J. Mattay, N. Sewald and B. O. Patrick, *Beilstein J. Org. Chem.*, 2020, 16, 111.
- [3] M. Tian and H. Ihmels, Synthesis, 2009, 24, 4226.
- [4] K. Rurack and M. Spieles, Anal. Chem., 2011, 83, 1232.
- [5] J. B. Foresman and A. Frisch, *Exploring chemistry with electronic structure methods,* Gaussian Inc, Wallingford, CT USA, **2015**.
- [6] (a) F. Neese, Wiley Interdiscip. Rev.-Comput. Mol. Sci., 2018, 8; (b) F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73.
- [7] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, *J. Cheminform.*, 2012, **4**, 17.
- [8] J. Zhang, H.-W. Liu, X.-X. Hu, J. Li, L.-H. Liang, X.-B. Zhang and W. Tan, Anal. Chem., 2015, 87, 11832.
- [9] R. Bortolozzi, H. Ihmels, L. Thomas, M. Tian and G. Viola, Chem. Eur. J., 2013, 19, 8736.
- [10] B. Brennecke, Q. Wang, Q. Zhang, H.-Y. Hu and M. Nazaré, *Angew. Chem.*, 2020, **132**, 8590.
- [11] F. R. Bloom, B. J. Schmidt and J.-J. Lin, Rapid Growing Microorganisms for Biotechnology Applications. US 6709852 B1, 2004.