Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Material (ESI)

for

Functionalization of graphene oxide with a hybrid P, N ligand for immobilizing and stabilizing economical and non-toxic nanosized CuO: An efficient, robust and reusable catalyst for C-O coupling reaction in Oarylation of phenol

Preeti Oswal, Aayushi Arora, Siddhant Singh, Divyanshu Nautiyal, Sushil Kumar and Arun Kumar*

Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India.

Corresponding author: Arun Kumar, e-mail: <u>arunkaushik@gmail.com</u>, <u>akumar.ch@doonuniversity.ac.in</u>

TABLE OF CONTENTS

Sections	Figures	Tables		
S1.SEM-EDS data	Fig. S1. EDS spectrum of GO-PN-	Table S1. Comparison of present		
S2. FTIR data	CuO	catalyst (GO-PN-CuO) with		
S3. IGA data	Fig. S2.EDS spectrum of GO	previously reported Cu-catalytic		
S4. Comparative study of GO PN CuO catalyst with	Fig. S3. EDS analysis of GO	system for O-arylation reaction		
previously reported	Fig. S4. EDS spectrum of GO-			
catalytic systems.	COCl			
S5. NMR data of C-O	Fig. S5. EDS analysis of GO-			
coupling reactions of aryl	COCl			
halides and substituted	Fig. S6. FTIR spectra of P,N			
phenol	ligand			
S6. NMR spectra of cross-	Fig. S7. FTIR spectra of GO			
coupled products obtained	Fig. S8. FTIR spectra of GO-PN			
in C-O coupling reactions.	Fig. S9. FTIR spectra of GO-PN-			
	CuO			
	Fig. S10. TGA curve for			
	GO-PN-CuO catalyst			
	Fig. S11. ${}^{31}P{}^{1}H$ NMR spectrum			
	of hybrid P, N ligand			
	Fig. S12. ${}^{31}P{}^{1}H$ NMR spectrum			
	of GO-PN			
	Fig. S13. ${}^{31}P{}^{1}H$ NMR spectrum			
	of GO-PN-CuO			
	Fig. S14. ¹ H NMR spectrum			
	(scale: 1.0 to 15.0 ppm) of 4-			
	nitrodiphenylether			
	Fig. S15. ¹ H NMR spectrum			
	(scale: 6.5 to 8.5 ppm) of 4-			
	nitrodiphenylether			
	Fig. S16. ¹ H NMR spectrum			
	(scale: 3.0 to 15.0 ppm) of 4-			
	phenoxy benzaldehyde			
	Fig. S17. ¹ H NMR spectrum			
	(scale: 6.5 to 10.5 ppm) of 4-			
	phenoxy benzaldehyde			
	Fig. S18. ¹ H NMR spectrum			
	(scale: 10.0 to 1.0 ppm) of 4-			
	phenoxy benzonitrile			
	Fig. S19. ¹ H NMR spectrum			
	(scale: 6.5 to 8.5 ppm) of 4-			
	phenoxy benzonitrile			
	Fig. S20. ¹ H NMR spectrum			
	(scale: 1.0 to 10.0 ppm) of			
	diphenylether			

	Fig. S21. ¹ H NMR spectrum (scale: 6.5 to 8.5 ppm) of diphenylether Fig. S22. ¹ H NMR spectrum (scale: 1.0 to 10.0 ppm) of 4- methoxy diphenylether Fig. S23. ¹ H NMR spectrum (scale: 6.5 to 8.5 ppm) of 4- methoxy diphenylether Fig. S24. ¹ H NMR spectrum (scale: 6.5 to 8.5 ppm) of 4-acetyl diphenylether Fig. S25. ¹ H NMR spectrum (scale: 6.5 to 8.5 ppm) of 4-acetyl diphenylether Fig. S26. ¹ H NMR spectrum (scale: 1.0 to 10.0 ppm) of 4- methyl diphenylether Fig. S27. ¹ H NMR spectrum (scale: 6.5 to 7.5 ppm) of 4-methyl diphenylether Fig. S28. ¹ H NMR spectrum (scale: 1.0 to 10.0 ppm) of 2- pyridine phenylether Fig. S29. ¹ H NMR spectrum (scale: 6.0 to 8.0 ppm) of 2- pyridine phenylether	
--	--	--

S1. SEM-EDS DATA

Lsec: 30.0 0 Cnts 0.000 keV Det: Apollo X-SDD Det

Element	Weight %	Atomic %	Error %	Kratio
СК	40.33	58.89	9.61	0.20
NK	7.63	9.56	22.80	0.02
ОК	20.36	22.32	11.67	0.07
CuL	29.98	8.28	5.44	0.19
PK	1.69	0.96	26.83	0.01

Fig. S1. EDS spectrum of GO-PN-CuO

Element	Atomic %	Weight %
С	72.88	66.86
0	27.12	33.14

Fig. S3. EDS analysis of GO

Element	Atomic %	Weight %
С	79.61	73.68
0	19.61	24.18
Cl	0.78	2.14

S2. FTIR DATA

Fig. S6. FTIR spectrum of hybrid P,N ligand

Fig. S7. FTIR spectra of GO

500 1000 1500 2000 2500 3000 3500 4000 4500 Wavenumber/ cm-1

0

Fig. S9. FTIR spectra of GO-PN-CuO

Fig. S10. TGA curve for GO-PN-CuO catalyst

Fig. S11. ³¹P{¹H} NMR spectrum of hybrid P, N ligand (Ph₂P-CH₂-CH₂-NH₂) having signal at -21.30 ppm.

Fig. S12. Solid state ³¹P NMR spectrum of GO-PN having Ph₂P-CH₂-CH₂-NH₂ on the surface of Graphene Oxide.

Fig. S13. Solid state ³¹P NMR spectrum of GO-PN-CuO having immobilized nanoparticles of copper(II) oxide on functionalized Graphene Oxide with Ph₂P-CH₂-CH₂-NH₂

S4. Comparative study of GO-PN-CuO catalyst with reported/known catalytic systems.

The efficacy of GO–PN–CuO nanocatalytic system for C–O coupling reaction of bromobenzene with phenol has been compared with some earlier reported catalysts as demonstrated in Table S1. As can be seen, GO–PN–CuO performs the reaction at 100 °C in 12 h of reaction time at a low

catalyst loading of 2.25 mol% and exhibits high catalytic efficiency upto 99% conversion for this reaction.

Entry	Catalyst	Solvent	Catalyst	Time	Temperature	Yield	Reference
			Amount				
1.	Cu _{1.8} S	DMSO	1.25 mol%	8h	120°C	61%	1
	nanoflowers*						
2.	GO-Cu _{1.8} S	DMSO	1.25 mol%	8h	120°C	74%	1
	nanocomposite*						
3.	NF/GNRS/Cu	ACN	10 mol%	7h	80°C	90%	2
4.	Fe3O4@SiO2-BT-	DES	2 mol%	10h	100°C	93%	3
	Cu						
5.	Cu ₂ O NPs	DMAc	3 mol%	24h	27°C	79%	4
6.	CuNPs@Q-POP	DMF	7.3 mol%	24h	110°C	80%	5
7.	CuFe ₂ O ₄ /Ligand	NMP	5 mol%	24h	135°C	34%	6
8.	This work	DMSO	2.25 mol%	12h	110°C	99%	

Table S1. Comparison of present catalyst (GO-PN-CuO) with previously reported Cu-catalytic system for O–arylation reaction

S5. NMR data of cross-coupled products of C–O coupling reactions of aryl halides and phenol or derivatives of phenol

S5.1. 1-Nitro-4-phenoxy benzene:

Yellow solid, m.p. 52-55 °C (Lit. 56-57 °C)⁷. ¹H NMR (500 MHz, CDCl₃, 25°C vs TMS), δ (ppm): 8.11-8.14 (d, 2H), 7.34-7.40 (t, 2H), 7.16-7.21 (t, 1H), 7.01-7.03 (d, 2H), 6.92-6.95 (d, 2H).

S5.2. 4-Phenoxybenzaldehyde:

Yellow liquid, m.p. 24-26 °C. ¹H NMR (500 MHz, CDCl₃, 25°C vs TMS), δ (ppm): 9.92 (s, 1H), 7.84-7.86 (d, 2H), 7.40-7.45 (t, 2H), 7.20-7.26 (m, 1H), 7.05-7.11 (t, 4h).

S5.3. 1-Methyl-4-phenoxybenzene:

Colorless solid, m.p. 100-104 °C . ¹H NMR (500 MHz, CDCl₃, 25°C vs TMS), δ (ppm): 7.46-7.48 (m, 2H), 7.23-7.26 (t, 2H), 7.06-7.07 (m, 1H), 6.98-7.04 (m, 2H), 6.89-6.91 (m, 2H), 2.26 (s, 3H).

S5.4. 1-Methoxy-4-phenoxybenzene:

Colorless liquid, m.p. 10-14 °C . ¹H NMR (500 MHz, CDCl₃, 25°C vs TMS), δ(ppm): 7.25-7.32 (m, 2H), 7.01-7.06 (t, 1H), 6.93-7.01 (m, 4H), 6.86-6.90 (m, 2H), 3.81 (s, 3H).

S5.5. Diphenyl ether:

Colorless liquid, m.p. 25-29 °C (Lit. 26-27 °C)⁸. ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.25 (t, 4H), 6.93 (t, 2H), 7.37 (d, 4H).

S5.6. 4-Phenoxybenzonitrile:

Colourless solid, m.p. 41-44 °C (Lit. 45-46 °C)⁹. ¹H NMR (500 MHz, CDCl₃), δ(ppm): 7.55 (d, 2H), 7.43 (t, 2H), 7.20 (t, 1H), 7.00 (d, 2H), 6.95 (d, 2H).

S5.7. 1-(4-Phenoxyphenyl)ethanone:

Colourless solid, m.p. 50-52 °C. ¹H NMR (500 MHz, CDCl₃), δ(ppm): 7.93 (m, 2H), 7.37-7.41 (m, 2H), 7.18-7.21 (t, 1H), 7.08-7.06 (m, 2H), 6.98-7.00 (m, 2H), 2.57 (s, 3H).

S5.8. 2-Phenoxy pyridine:

Colourless oil, m.p. 46-48 °C. ¹H NMR (500 MHz, CDCl₃), δ(ppm): 7.689-7.65 (M, 1H), 7.48-7.46 (m, 1H), 7.12 (t, 2H), 6.89-6.84 (m, 5H).

S6. NMR spectra of cross-coupled products of C-O coupling reactions:

Fig. S14. ¹H NMR spectrum (scale: 1.0 to 15.0 ppm) of 4-nitrodiphenylether

Fig. S15. ¹H NMR spectrum (scale: 6.5 to 8.5 ppm) of 4-nitrodiphenylether

Fig. S16. ¹H NMR spectrum (scale: 3.0 to 15.0 ppm) of 4-phenoxy benzaldehyde

Fig. S17. ¹H NMR spectrum (scale: 6.5 to 10.5 ppm) of 4-phenoxy benzaldehyde

Fig. S18. ¹H NMR spectrum (scale: 10.0 to 1.0 ppm) of 4-phenoxy benzonitrile

Fig. S20. ¹H NMR spectrum (scale: 1.0 to 10.0 ppm) of diphenylether

Fig. S21. ¹H NMR spectrum (scale: 6.5 to 8.5 ppm) of diphenylether

Fig. S22. ¹H NMR spectrum (scale: 1.0 to 10.0 ppm) of 4-methoxy diphenylether

Fig. S23. ¹H NMR spectrum (scale: 6.5 to 8.5 ppm) of 4-methoxy diphenylether

Fig. S24. ¹H NMR spectrum (scale: 6.5 to 8.5 ppm) of 4-acetyl diphenylether

Fig. S25. ¹H NMR spectrum (scale: 6.5 to 8.5 ppm) of 4-acetyl diphenylether

Fig. S26. ¹H NMR spectrum (scale: 1.0 to 10.0 ppm) of 4-methyl diphenylether

Fig. S27. ¹H NMR spectrum (scale: 6.5 to 7.5 ppm) of 4-methyl diphenylether

Fig. S28. ¹H NMR spectrum (scale: 1.0 to 10.0 ppm) of 2-pyridine phenylether

Fig. S29. ¹H NMR spectrum (scale: 6.0 to 8.0 ppm) of 2-pyridine phenylether

References

- [1]V. V. Singh and A. K. Singh, ACS Appl. Nano Mater., 2018, 1, 2164-2174.
- [2] A. S. Singh, S. S. Shendage and J. M. Nagarkar, Tetrahedron Lett., 2014, 55, 4917-4922.
- [3]M. Niakan, S. Karimi, M. Masteri-Farahani and H.Shekaari, *Colloids Surf.*, A, 2021, **620**, 126603.
- [4] F. Gorginpour and H.Zali-Boeini, Mol. Catal., 2021, 504, 111460.
- [5] S. G. Babu and R. Karvembu, *Tetrahedron Lett.*, 2013, 54, 1677-1680.
- [6] S. Yang, C. Wu, H. Zhou, Y. Yang, Y. Zhao, C. Wang and J. Xu, Adv. Synth. Catal., 2013, 355, 53-58.
- [7] M. J. Rarick, R. Q. Brewster and F. B. Dains, J. Am. Chem. Soc., 1933, 55, 1289-1290.

- [8] G. T. Furukawa, D. C. Ginnings, R. E. McCoskey and R. A. Nelson, J. Res. NBS, 1951, 46, 195-206.
- [9] F. Li, Q. Meng, H. Chen, Z. Li, Q. Wang and F. Tao, Synthesis, 2005, 2005, 1305-1313.