Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Material (ESI) for New Journal of Chemistry

## Theoretical investigation on the nature of substituted benzene…AuX

## interactions: covalent or noncovalent?

Aiting Shan,<sup>a</sup> Xiaoyan Li,<sup>a</sup> Yanli Zeng,<sup>a</sup> Lingpeng Meng<sup>a</sup> and Xueying Zhang<sup>\*a</sup>

| Figure S1 Optimized geometries of the complexes                                                                                            | 2  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure S2 Relationships between binding energies $\Delta E$ and equilibrium distance $R_{\perp}$ for the $\pi \cdots \Delta u X$ complexes | 3  |
| Figure S3 Relationships between binding energies $\Delta E$ and electron density $\rho_b$ or its Laplacian                                 |    |
| $\nabla^2 \rho_b$ at the C···Au BCPs or RCPs in the complexes                                                                              | .3 |
| Figure S4 Relationships between delocalization index $\delta(A, B)$ and Wiberg bond index WBI <sub>Au-C</sub> for                          | or |
| the complexes                                                                                                                              | 4  |
| Figure S5 Computed density difference plots for the complexes TFB…AuX                                                                      | 5  |
| Figure S6 Computed density difference plots for the complexes HFB…AuX                                                                      | 6  |



**Figure S1** Optimized geometries of the complexes: (a) TFB…AuF, (b) TFB…AuCl, (c) TFB …AuBr, (d) TFB …AuCN, (e) TFB …AuNO<sub>2</sub>, (f) TFB …AuCH<sub>3</sub>, (g) HFB…AuF, (h)HFB…AuCl, (i) HFB…AuBr, (j) HFB …AuCN, (k) HFB …AuNO<sub>2</sub>, (l) HFB …AuCH<sub>3</sub>



**Fig. S2** Relationships between binding energies  $\Delta E$  and equilibrium distance  $R_{\perp}$  for the  $\pi$ ···AuX complexes (a) BZN···AuX and TFB···AuX (b) HFB···AuX



**Fig. S3** Relationships between binding energies  $\Delta E$  and electron density  $\rho_b$  or its Laplacian  $\nabla^2 \rho_b$  at the C···Au BCPs or RCPs in the complexes (a) BZN···AuX (b) TFB···AuX (c) HFB···AuX



**Fig. S4** Relationships between delocalization index  $\delta(A, B)$  and Wiberg bond index WBI<sub>Au-C</sub> for the complexes (a) BZN…AuX (b) TFB…AuX (c) HFB…AuX



**Fig. S5** Computed density difference plots for the complexes TFB…AuX. (a) TFB…AuF, (b) TFB…AuCl, (c) TFB…AuBr, (d) TFB…AuCN, (e) TFB…AuNO<sub>2</sub>, (f) TFB…AuCH<sub>3</sub>



**Fig. S6** Computed density difference plots for the complexes HFB…AuX. (a) HFB…AuF; (b) HFB…AuCl; (c) HFB…AuBr; (d) HFB…AuCN; (e) HFB…AuNO<sub>2</sub>; (f) HFB…AuCH<sub>3</sub>.