Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

2D/2D Bi_2WO_6 /Protonated g- C_3N_4 Direct Z-scheme Heterojunctions for Enhancing Photodegradation of 17 β -Estradiol: Promotional Role of Electrostatic Interaction

Yashi Qing^{a,b}, Yanxiang Li^{a,b,*}, Dan Hu^d, Zhiwei Guo^a, Yujie Yang^{a,b}, Lihong Geng^c,

Wangliang Li^{a,b,*}

^aCAS Key Laboratory of Green Process and Engineering, Institute of Process

Engineering, Chinese Academy of Sciences, Beijing 100190, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

^c Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fujian 350108, China

^d Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China

*Corresponding Author: Wangliang Li, +86-10-82545011, <u>wlli@ipe.ac.cn</u>; Yanxiang Li, <u>yxli@ipe.ac.cn</u>

Number of tables: 3

Number of figures: 3

Compounds	Formula	m/z	Proposed structure
17β-Estradiol	$C_{18}H_{24}O_2$	273.13	но-С-С-Он
P1	$C_{18}H_{22}O_2$	270.72	но
P2	$C_{18}H_{22}O_3$	287.19	но
Р3	$C_{18}H_{22}O_3$	287.19	но
P4	$C_{18}H_{22}O_3$	287.19	но-С-С-С-ОН
Р5	$C_{18}H_{20}O_3$	284.84	
Р6	$C_{18}H_{20}O_{3}$	284.84	
P 7	$C_{18}H_{20}O_3$	284.84	
P8	C ₁₇ H ₂₄ O	245.32	
Р9	$C_{16}H_{20}O_2$	245.32	

Table S1. The information of the intermediates.

$C_{10}H_{14}O_3$	183.15	
$C_{10}H_{13}O_3$	183.15	HO
$C_7H_8O_2$	125.94	
$C_7H_8O_2$	125.94	ОН
$C_5H_6O_2$	99.20	
C ₄ H ₅ O ₂	85.21	
	$C_{10}H_{14}O_3$ $C_{10}H_{13}O_3$ $C_7H_8O_2$ $C_7H_8O_2$ $C_5H_6O_2$ $C_4H_5O_2$	$C_{10}H_{14}O_3$ 183.15 $C_{10}H_{13}O_3$ 183.15 $C_{7}H_8O_2$ 125.94 $C_7H_8O_2$ 125.94 $C_5H_6O_2$ 99.20 $C_4H_5O_2$ 85.21

Photocatalysts	τ_1/ns	τ_2/ns	A_1	A_2	Y ₀	τ/ns	R ²
Bi ₂ WO ₆	2.29	9.10	735.48	247.06	10.81	6.19	0.99607
pg-C ₃ N ₄	2.18	7.70	708.14	266.50	9.10	5.33	0.99682
B1PG1	3.18	13.76	679.09	302.17	15.96	5.93	0.99584

Table S2. Fitted parameters from time-resolved PL spectroscopy of pure Bi_2WO_6 , pure pg-C₃N₄ and the BPG heterojunction.

Sample	E _g (eV)	E _F -E _V (eV)	E _F (eV)	$E_V(eV)$ $E_C(eV)$
Bi ₂ WO ₆	2.68	1.20	-5.90	-7.10 -4.42
pg-C ₃ N ₄	2.65	1.05	-4.18	-5.23 -2.59

Table S3. Bandgap energy (E_g), XPS valence band cutoff, Fermi level (E_f), valence band (E_{VB}) and conduction band (E_{CB}) of Bi_2WO_6 and $pg-C_3N_4$.

Figure S1. SEM images of (a) B1PG2; (b) B2PG1.

Figure S2. (a) Total ion current (TIC) chromatograms of the reaction solutions before and after irradiation. (b) 17 β -estradiol and (c)~(f) its photodegradation intermediates.

Figure S3. Molecular structure of E2.