SUPPLEMENTARY INFORMATION

A 2D/1D Heterojunction Nanocomposite built from Polymeric Carbon Nitride and MIL–88A(Fe) derived α -Fe₂O₃ for Enhanced Photocatalytic degradation of Rhodamine-B

Vandana P. Viswanathan,[†] Nayarassery N. Adarsh,[†] Marylin Mary Xavier, [†] and Suresh Mathew^{*,†,‡}

[†]School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India. [‡]Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India.

SI.	Fe ₂ O ₃ Precursor	Synthesis	Photocatalytic condition	Degradation efficiency	Reference No.
No					
•			50 400044551	000/ 6770 6	50
1.	MIL-53(Fe)	Hydrothermal	50 mg, 100W LED lamp	92% of TC for	52
			(420 nm)	60 m.	
2	MIL-101	Hydrothermal	300W Xe lamp	Hydrogen evolution	53
3	MIL-100	Hydrothermal	300W Xe lamp	Hydrogen evolution	54
4	Waste iron rust	Calcination	100 mg, Sunlight	99% MO for 120 m	44
5	FeCl ₃ ·6H ₂ O	Hydrothermal	100 mg, 300W Xe lamp	98% Cr(VI) reduction for	40
				150 m	
6	Fe(NO ₃) ₃ ·9H ₂ O	Calcination	50 mg, 300W Xe lamp	90% Hg reduction for 60 m	37
7	Fe ₂ (C ₂ O ₄) ₃ . 6H ₂ O	Calcination	10 mg,	Removal of Phospate	38
8	FeCl ₃ ·6H ₂ O	Calcination	100 mg	CO ₂ reduction	39
9	FeCl ₃ ·6H₂O	Calcination	20mg, 300W Xe lamp	Hydrogen evolution	34
10	Fe(NO ₃) ₃	Calcination	65 W CFL lamp, intensity-	94.7% RhB reduction for	35
			125 W/m2, λ > 400 nm	140 m	
11	Fe(NO ₃) ₃ . 9H ₂ O	Hydrothermal	70mg, 300W Xe lamp	96.7% RhB reduction for 4	42
				h	
12	FeCl₃	Hydrothermal	300W Xe lamp	Completely degraded 4-	43
				nitrophenol 100% for 6h	
13	MIL-88A(Fe)	Calcination	Sunlight	92% of RhB for	This Work
				60 minutes	

Table S1. Comparison of the photocatalytic degradation efficiency of MIL-88A derived Fe_2O_3 / C_3N_4 with literature

Figure S1. Thermogravimetry curve of C_3N_4 , FC-4, FC-8 and FC-12

Sample Name	% of C ₃ N ₄	% of C ₃ N ₄	% of Residue	Reference
	evolved	left in the	(Fe ₂ O ₃ /C ₃ N ₄)	
		residue		
MIL-88A	0%	-	45%	RSC Adv., 2015, 5, 32520–
			Corresponding to	32530
			only Fe ₂ O ₃	
C ₃ N ₄	100%	-	0 %	This work
Fe ₂ O ₃ /C ₃ N ₄ (FC-4)	18.69%	36.31%	81.31%	This work
Fe ₂ O ₃ /C ₃ N ₄ (FC-8)	33.79%	21.21%	66.21%	This work
Fe ₂ O ₃ /C ₃ N ₄ (FC-12)	46.89%	8.11%	53.11%	This work

Table S2. Tabulated data of weight % of C_3N_4 evolved and % of C_3N_4 left in the residue by the decomposition of FC-4, FC-8 and FC-12

Figure S2. a) Mass spectrum of FC-4 b) Gas chromatogram (m/z=30) c) Gas chromatogram (m/z=44)

Figure S3. Photocatalytic degradation curves of RhB using α -Fe $_2O_3$ / C_3N_4 and MOF-derived α -Fe $_2O_3/$ C_3N_4

Parameters	Fe ₂ O ₃	g-C ₃ N ₄
Bandgap E _g (eV)	2.0	2.97
Absolute electronegativity χ (eV)	5.82	4.72
Free electrons energy E ^e (eV)	4.50	4.50
Valence band position (E_{VB}) (eV)	+2.32	+1.705
Conduction band position E_{CB} (eV)	+0.32	-1.265

Table S3. Bandgap, Conduction and Valence band values of α -Fe₂O₃ and C₃N₄