Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

'Awaken' aryl sulfonyl fluoride: a new partner in the Suzuki–Miyaura coupling reaction

Guofu Zhang, Chenfei Guan, Yiyong Zhao, Huihui Miao, Chengrong Ding*

College of Chemical Engineering, Zhejiang University of Technology,

Hangzhou, Zhejiang 310014, P. R. China

Tel.: +86-571-88320147; fax: +86-571-88320147;

E-mail: dingcr@zjut.edu.cn

Table of Contents

1. General information	S2
2. Experimental Procedure for Compounds 1	S3
3. Optimization of reaction conditions	S4-S10
4. Experimental procedures for coupling products	S11-S12
5. Mechanistic Studies	S13-S18
6. Experimental Characterization Data	.S19-S35
7. References	
8. Copies of ¹ H and ¹³ C spectra for coupling products	S38-S90
9. Table of Energies	.S91-S92
10. Cartesian Coordinates	

Experimental Section

1: General information.

All source materials and reagents were purchased from commercial suppliers and are used without pretreatment unless otherwise indicated. All experiments involving palladium were performed using standard Schlenk techniques under nitrogen or argon unless stated otherwise. were detected using thin-layer chromatography (TLC) on commercial silica gel plates. Visualization of the developed plates was performed under UV light (254 nm). Rapid column chromatography was performed on silica gel. Column chromatography was performed with silica gel (300-400 mesh) using various combinations of non-aqueous organic solvents as eluents. NMR spectra were recorded in CDCl₃ or DMSO-d₆ on Bruker AVANCE III 500 MHz (¹HNMR) and 126 MHz (¹³CNMR) instruments with TMS as the internal standard. High-resolution mass spectrometry analysis was performed on the ThermoFlisher ITQ1100.

2: Experimental Procedure for Compounds 1

Representative method for the synthesis of compound 1 (aryl sulfonyl fluoride).¹⁻³ KHF₂ (42.5 mmol, 2.5 equiv.) was dissolved in H₂O (7 mL) to make a saturated solution, which was treated with a solution of aryl sulfonyl chloride (17 mmol, 1 equivalent) in acetonitrile (20 mL). The reaction mixture was stirred at room temperature for 4-10 hours and was measured by HPLC. The aqueous phase was extracted with EtOAc (3×10 mL) and the combined organic extracts were washed with 10% NaCl aqueous solution (2x), saturated sodium chloride (1x), dried with sodium sulfate, filtered, and concentrated by rotary evaporation to obtain the pure product. The yield for the formation of aryl sulfonyl fluoride ranges from 45 to 99%.

1. J. Dong, L. Krasnova, M. G. Finn and K. B. Sharpless, *Angew. Chem. Int. Ed.*, 2014, **53**, 9430-9448.

2. H. Mukherjee, J. Debreczeni, J. Breed, S. Tentarelli, B. Aquila, J. E. Dowling, A. Whitty and N. P. Grimster, *Org. Biomol. Chem.*, 2017, **15**, 9685-9695.

3. Y. Liu, D. Yu, Y. Guo, J. C. Xiao, Q. Y. Chen and C. Liu, *Org. Lett.*, 2020, **22**, 2281-2286.

3: Optimization of reaction conditions

General Procedure for Reaction Optimization.

A Schlenk flask equipped with a stirring bar is filled with Aryl Sulfonyl fluoride (neat, 1.0 equiv.), base (typically, 3.0 equiv.), Organic Boron reagent (typically, 1.5 equiv.), palladium complex (typically, 5 mol%), ligand (typically, 20 mol%) under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The solvent (1 mL) was added under vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath and stirred for the indicated time. After the indicated time, the reaction mixture was cooled down to room temperature, diluted with ethyl acetate (10 mL), filtered, and concentrated. It was purified by column chromatography on silica gel to obtain the pure product in yield and the samples were analyzed by ¹H NMR (CDCl₃, 500 MHz).

Optimization of the reaction conditions for Compounds 3. Table S1. Optimization of the reaction conditions: screening of time^{*a*}

Entry	Time/h	Yield $(\%)^b$
1	4	47
2	8	55
3	12	64
4	16	63
5	24	59

^{*a*} Reaction conditions: 4-Methoxybenzenesulfonyl fluoride (0.2 mmol), Aryl boronic acids (0.3 mmol, 1.5 equiv.), Pd(OAc)₂ (0.01 mmol, 5 mol%), Ruphos (0.04 mmol, 20 mol%), K₃PO₄ (0.6 mmol, 3.0 equiv.), DMF (1 mL), 120°C, t h; Under nitrogen atmosphere. ^{*b*} Isolated yield.

Table S2. Optimization of the reaction conditions: screening of base^a

Entry	Base (3 eq.)	Yield $(\%)^b$
1	DMAP	none
2	Na ₂ CO ₃	trace
3	NaHCO ₃	trace

4	K_2CO_3	41
5	KHCO3	51
6	KF	trace
7	Cs ₂ CO ₃	45
8	t-BuOK	11
9	KH ₂ PO ₄	trace
10	CH ₃ ONa	trace
11	DBU	none
12	DIPEA	trace
13	Et ₃ N	none
14	K ₃ PO ₄	64
15 ^c	-	none
16^{d}	K ₃ PO ₄	17
17^{e}	K ₃ PO ₄	48
18 ^f	K ₃ PO ₄	54

^{*a*} Reaction conditions: 4-Methoxybenzenesulfonyl fluoride (0.2 mmol), Aryl boronic acids (0.3 mmol, 1.5 equiv.), Pd(OAc)₂(0.01 mmol, 5 mol%), Ruphos (0.04 mmol, 20 mol%), Base (0.6 mmol, 3.0 equiv.), DMF (1 mL), 120°C, 12.0 h; Under nitrogen atmosphere. ^{*b*} Isolated yield. ^{*c*} Base was omitted. ^{*d*} Base (0.2 mmol, 1.0 equiv.). ^{*e*} Base (0.4 mmol, 2.0 equiv.). ^{*f*} Base (0.8 mmol, 4.0 equiv.).

Table S3. Opti	mization of	f the	reaction	conditions:	screening	of s	olvent ^a
----------------	-------------	-------	----------	-------------	-----------	------	---------------------

Entry	Solvent (1ml)	Yield $(\%)^b$
1	DMF	64
2	DMSO	54
3	DMAC	29
4	Toluene	62
5	Xylene	58
6	O-xylene	trace
7	Chlorobenzene	14
8	Ethylene glycol	trace
9	N-butanol	11
10	Glycerol	trace
11	Dioxane	38
12 ^c	Water	none

^{*a*} Reaction conditions: 4-Methoxybenzenesulfonyl fluoride (0.2 mmol), Aryl boronic acids (0.3 mmol, 1.5 equiv.), Pd(OAc)₂ (0.01 mmol, 5 mol%), Ruphos (0.04 mmol, 20 mol%), Base (0.6

mmol, 3.0 equiv.), DMF (1 mL), 120°C, 12.0 h; Under nitrogen atmosphere. ^b Isolated yield. ^c The reaction was carried out at 80 °C.

Table S4. Optimization of the reaction conditions: screening of palladium catalyst and ligand^a

Entry	Cat. (mol%)	Ligand (mol%)	Yield $(\%)^b$
1	$Pd(acac)_2$	Ruphos	none
2	5 % Pd/C	Ruphos	none
3	PdCl ₂	Ruphos	none
4	Pd(PPh ₃)Cl ₂	Ruphos	none
5	$Pd(TFA)_2$	Ruphos	57
6	$Pd(OAc)_2$	Ruphos	64
7	$Pd(OAc)_2$	PPh ₃	none
8	$Pd(OAc)_2$	DPPP	none
9	$Pd(OAc)_2$	Xantphos	none
10	$Pd(OAc)_2$	TMTP	none
11	$Pd(OAc)_2$	(R)-BINAP	none
12	$Pd(OAc)_2$	SPhos	56
13	$Pd(OAc)_2$	BINAP	none
14	$Pd(OAc)_2$	DCPP	none
15	$Pd(OAc)_2$	DPEphos	none
16	$Pd(OAc)_2$	TDMPP	38
17	$Pd(OAc)_2$	NHC-Pd	none
18	$Pd(OAc)_2$	N-XantPhos	none
19	$Pd(OAc)_2$	$P(1-nap)_3$	14
20	$Pd(OAc)_2$	JohnPhos	none
21	Pd(OAc)2	BrettPhos	52
22	$Pd(OAc)_2$	Dppf	none
23	$Pd(OAc)_2$	Cphos	none
24	$Pd(OAc)_2$	PhDavephos	none
25 ^c	-	Ruphos	none
26^d	$Pd(OAc)_2$	-	none
27^e	$Pd(OAc)_2$	Ruphos	41
28 ^f	$Pd(OAc)_2$	Ruphos	74
29 ^g	$Pd(OAc)_2$	Ruphos	74
30^h	$Pd(OAc)_2$	Ruphos	39
31 ^{<i>i</i>}	$Pd(OAc)_2$	Ruphos	15

^{*a*} Reaction conditions: 4-Methoxybenzenesulfonyl fluoride (0.2 mmol), Aryl boronic acids (0.3 mmol, 1.5 equiv.), [Pd] (0.01 mmol, 5 mol%), Ligand (0.04 mmol, 20 mol%), Base (0.6 mmol, 3.0 equiv.), DMF (1 mL), 120°C, 12.0 h; Under nitrogen atmosphere. ^{*b*} Isolated yield. ^{*c*} No Catalyst was used. ^{*d*} No Ligand was used. ^{*e*} Pd(OAc)₂ (0.004 mmol, 2 mol%). ^{*f*} Pd(OAc)₂ (0.02 mmol, 10 mol%). ^{*g*} Pd(OAc)₂ (0.04 mmol, 20 mol%). ^{*h*} Ruphos (0.02 mmol, 10 mol%). ^{*i*} Ruphos (0.08 mmol, 40 mol%).

Phosphine ligands:

PhDavephos

7

Table S5. Optimization of the reaction conditions: screening of temp^a

	2	1 mp (0)	11014 (73)
	1	100	45
	2	120	74
	3	140	37
. D	11.1 () () 1		

^{*a*} Reaction conditions: 4-Methoxybenzenesulfonyl fluoride (0.2 mmol), Aryl boronic acids (0.3 mmol, 1.5 equiv.), Pd(OAc)₂ (0.02 mmol, 10 mol%), Ruphos (0.04 mmol, 20 mol%), K₃PO₄ (0.6 mmol, 3.0 equiv.), DMF (1 mL), 12.0 h; Under nitrogen atmosphere. ^{*b*} Isolated yield.

 Table S6. Optimization of the reaction conditions: screening of the ratio of boronic

 acid^a

$ \begin{array}{c} Pd(OAc)_2 (10 \text{ mol}\%) \\ Ruphos (20 \text{ mol}\%) \\ \overline{K_3PO_4 (3 \text{ eq.})} \\ 120^{\circ}\text{C}, DMF (1 \text{ mL}), 1 \end{array} $	→ O-()→() 2 h 3a
2a (equiv)	Yield $(\%)^b$
1	47
1.5	74
2	50
4	50
-	none
	$ \begin{array}{c} Pd(OAc)_{2} (10 \text{ mol}\%) \\ Ruphos (20 \text{ mol}\%) \\ K_{3}PO_{4} (3 \text{ eq.}) \\ 120^{\circ}C, DMF (1 \text{ mL}), 1 \\ 2a (equiv) \\ 1 1.5 2 4 - - - $

^{*a*} Reaction conditions: 4-Methoxybenzenesulfonyl fluoride (0.2 mmol), Aryl boronic acids, Pd(OAc)₂ (0.02 mmol, 10 mol%), Ruphos (0.04 mmol, 20 mol%), K₃PO₄ (0.6 mmol, 3.0 equiv.), DMF (1 mL), 120°C, 12.0 h; Under nitrogen atmosphere. ^{*b*} Isolated yield. ^{*c*} No Aryl boronic acids was used.

Table S7. Optimization of the reaction conditions: screening of atmosphere^a

Entry	Atmosphere	Yield (%)
1	Air	12
2	N_2	74
3	O_2	none
4	SO_2F_2	none

^{*a*} Reaction conditions: 4-Methoxybenzenesulfonyl fluoride (0.2 mmol), Aryl boronic acids (0.3 mmol, 1.5 equiv.), Pd(OAc)₂ (0.02 mmol, 10 mol%), Ruphos (0.04 mmol, 20 mol%), K₃PO₄ (0.6 mmol, 3.0 equiv.), DMF (1ml), 120°C, 12.0 h. ^{*b*} Isolated yield.

Optimization of the reaction conditions for Compounds 4. Table S8. Optimization of the reaction conditions.^a

O-	-SO ₂ F +	$-Bpin \qquad \frac{Pd(C)}{Rup} \\ -Bpin \qquad \frac{T \circ C}{T}$	DAc) ₂ (10 mol%) hos (20 mol%) ase (3 eq.) solvent (1 mL), t h		Jan Aa
Entry	Base (3eq.)	Solvent	Temp (°C)	Time (h)	Yield $(\%)^b$
1	K_2CO_3	DMF	120	12	12
2	KHCO ₃	DMF	120	12	trace
3	t-BuOK	DMF	120	12	none
4	Et ₃ N	DMF	120	12	11
5	Me ₃ SiOK	DMF	120	12	none
6	K ₃ PO ₄	DMF	120	12	75
7	K ₃ PO ₄	DMSO	120	12	58
8	K ₃ PO ₄	Toluene	120	12	67
9	K ₃ PO ₄	Dioxane	120	12	46
10	K ₃ PO ₄	DMF	60	12	62
11	K ₃ PO ₄	DMF	80	12	77
12	K ₃ PO ₄	DMF	100	12	74
13	K ₃ PO ₄	DMF	140	12	57
14	K_3PO_4	DMF	80	4	35
15	K ₃ PO ₄	DMF	80	8	77
16	K ₃ PO ₄	DMF	80	10	77
17	K ₃ PO ₄	DMF	80	14	76
18 ^c	K ₃ PO ₄	DMF	80	8	61
19 ^d	K ₃ PO ₄	DMF	80	8	80

^{*a*} Reaction conditions: 4-Methoxybenzenesulfonyl fluoride (0.2 mmol), Arylboronic acid ester (0.3 mmol, 1.5 equiv.), Pd(OAc)₂ (0.02 mmol, 10 mol%), Ruphos (0.04 mmol, 20 mol%), K₃PO₄ (0.6 mmol, 3.0 equiv.), DMF (1 mL), 80°C, 8.0 h; Under nitrogen atmosphere. ^{*b*} Isolated yield. ^{*c*} Arylboronic acid ester (0.2mmol, 1.0 equiv.). ^{*d*} Arylboronic acid ester (0.4mmol, 2.0 equiv.).

Optimization of the reaction conditions for Compounds 5. Table S9. Optimization of the reaction conditions.^a

		Pd(OA	Ac) ₂ (10 mol%)		
		Ruph	os (20 mol%)		
		Bl 3R Ba	se (3 eq.)		_/ _/
1a	2c	T °C, se	olvent (1 mL), t h		5a
Entry	Base (3eq.)	Solvent	Temp (°C)	Time (h)	Yield $(\%)^b$
1	K ₃ PO ₄	DMF	80	12	20
2	K_3PO_4	DMF	100	12	32
3	K_3PO_4	DMF	120	12	19
4	K ₃ PO ₄	DMF	140	12	17
5	K_3PO_4	DMF	100	6	13
6	K_3PO_4	DMF	100	8	46
7	K_3PO_4	DMF	100	16	32
8	K_3PO_4	DMF	100	24	31
9	K ₂ CO ₃	DMF	100	8	29
10	KHCO ₃	DMF	100	8	16
11	t-BuOK	DMF	100	8	none
12	Et ₃ N	DMF	100	8	11
13	Me ₃ SiOK	DMF	100	8	none
14	K_3PO_4	DMSO	100	8	trace
15	K_3PO_4	Toluene	100	8	trace
16	K_3PO_4	Dioxane	100	8	27
17 ^c	K_3PO_4	DMF	100	8	11
18^d	K ₃ PO ₄	DMF	100	8	35

^{*a*} Reaction conditions: 4-Methoxybenzenesulfonyl fluoride (0.2 mmol), Potassium phenyl trifluoroborate (0.3 mmol, 1.5 equiv.), Pd(OAc)₂ (0.02 mmol, 10 mol%), Ruphos (0.04 mmol, 20 mol%), K₃PO₄ (0.6 mmol, 3.0 equiv.), DMF (1 mL), 80°C, 8.0 h; Under nitrogen atmosphere. ^{*b*} Isolated yield. ^{*c*} Potassium phenyltrifluoroborate (0.2mmol, 1.0 equiv.). ^{*d*} Potassium phenyl trifluoroborate (0.4mmol, 2.0 equiv.)

4: Experimental Procedure for coupling products

General procedure for Suzuki-Miyamura cross-coupling of aryl sulfonyl fluoride with aryl boronic acid.

Aryl sulfonyl fluoride (0.2 mmol, 1.0 equiv.), Aryl boronic acid (0.3 mmol, 1.5 equiv.), $Pd(OAc)_2$ (4.4 mg, 10 mol%), Ruphos (18.7mg, 20 mol%) and K_3PO_4 (0.6 mmol, 3.0 equiv.) were added to 10 mL Schlenk Flasks equipped with stirring bar. under a positive pressure of nitrogen and five evacuation/backfilling cycles under high vacuum. The DMF (1 mL) was added under vigorous stirring at room temperature, the reaction

mixture was placed in a preheated oil bath (120°C) and stirred for 12 hours. After 12

hours, the reaction mixture was cooled down to room temperature, diluted with ethyl acetate (10 mL), filtered, and concentrated. Column chromatographic purification on silica gel (ethyl acetate/petroleum ether) to obtain pure product.

General procedure for Suzuki-Miyamura cross-coupling of aryl sulfonyl fluoride with aryl boronic acid ester.

Aryl sulfonyl fluoride (0.2 mmol, 1.0 equiv.), Aryl boronic acid ester (0.4 mmol, 2.0 equiv.), $Pd(OAc)_2$ (4.4 mg, 10 mol%), Ruphos (18.7mg, 20 mol%) and K_3PO_4 (0.6 mmol, 3.0 equiv.) were added to 10 mL Schlenk Flasks equipped with stirring bar. under a positive pressure of nitrogen and five evacuation/backfilling cycles under high vacuum. The DMF (1 mL) was added under vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath (80°C) and stirred for 8 hours. After 8 hours, the reaction mixture was cooled down to room temperature, diluted with ethyl acetate (10 mL), filtered, and concentrated. Column chromatographic purification on silica gel (ethyl acetate/petroleum ether) to obtain pure product.

General procedure for Suzuki-Miyamura cross-coupling of aryl sulfonyl fluoride with potassium phenyl trifluoroborate.

Aryl sulfonyl fluoride (0.2 mmol, 1.0 equiv.), Potassium phenyl trifluoroborate (0.4 mmol, 2.0 equiv.), $Pd(OAc)_2$ (4.4 mg, 10 mol%), Ruphos (18.7mg, 20 mol%) and K_3PO_4 (0.6 mmol, 3.0 equiv.) were added to 10 mL Schlenk Flasks equipped with stirring bar. under a positive pressure of nitrogen and five evacuation/backfilling cycles under high vacuum. The DMF (1 mL) was added under vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath (100°C) and stirred for 8 hours. After 8 hours, the reaction mixture was cooled down to room temperature, diluted with ethyl acetate (10 mL), filtered, and concentrated. Column chromatographic purification on silica gel (ethyl acetate/petroleum ether) to obtain pure product.

General procedure for the gram-scale preparation.

methyl 3-(fluorosulfonyl)benzoate (5.3 mmol, 1.16g, 1.0 equiv.), Aryl boronic acid (8.0 mmol, 1.5 equiv.), $Pd(OAc)_2$ (130.0 mg, 10 mol%), Ruphos (494.6 mg, 20 mol%) and K_3PO_4 (15.9 mmol, 3.0 equiv.) were added to 100 mL Schlenk Flasks equipped with stirring bar. under a positive pressure of nitrogen and five evacuation/backfilling cycles under high vacuum. The DMF (30 mL) was added under vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath (120°C) and stirred for 16 hours. After 16 hours, the reaction mixture was cooled down to room temperature, diluted with ethyl acetate, filtered, and concentrated. Column

2

chromatographic purification on silica gel (ethyl acetate/petroleum ether) to obtain pure product. Yield: 54% (607.4 mg).

Sequential synthesis of non-symmetric terphenyls.

4-Br-sulfonyl fluoride (49 mg, 0.2 mmol, 1.0 equiv.), aryl/alkenyl boronic acid (0.3 mmol, 1.5 equiv.), $Pd(OAc)_2$ (0.5 mg, 1 mol%), triethylamine (88 µL, 0.6 mmol, 3.0 equiv.), and water (2.5 mL) were added to a 10 mL Schlenk Flasks equipped with amagnetic stir bar. The resulting reaction mixture was stirred at room temperature in the open air. The reaction progress was monitored using TLC. Upon completion, the reaction mixture was diluted with ethylacetate (20 mL) and washed with water (3 × 15mL), followed by brine solution (3 × 15 mL). The organic layer was dried over anhydrous MgSO₄ and concentrated under vacuum. Column chromatographic purification on silica gel (EtOAc/hexanes = 1:50) to obtain pure product A1.

The A1 (0.2 mmol, 1.0 equiv.), (3,4-dimethoxyphenyl)boronic acid (0.3 mmol, 1.5 equiv.), $Pd(OAc)_2$ (6.7 mg, 15 mol%), Ruphos (18.7mg, 20 mol%) and K_3PO_4 (0.6 mmol, 3.0 equiv.) were added in nitrogen. Under a positive pressure of nitrogen and five evacuation/backfilling cycles under high vacuum. The reaction mixture was placed in a preheated oil bath (120°C) and stirred for 12 hours. After 12 hours, the reaction mixture was cooled down to room temperature, diluted with ethyl acetate (10 mL), filtered, and concentrated. Column chromatographic purification on silica gel (EtOAc/hexanes = 1:20) to obtain pure product A2. Yield: 73% (42 mg).

5: Mechanistic Studies

Method

All calculations were carried out with the Gaussian 09 software¹. The PBE0 functional² was adopted for all calculations in combination with the D3BJ dispersion correction³. For geometry optimization and frequency calculations, the LanL2DZ ECP and basis set⁴ was used for Pd and 6-31G(d) for others^{5,6}. The thermal correction to Gibbs free energy was calculated by the Shermo program⁷, based on the vibrational analysis result, and the temperature was set as 393 K. The singlet point energy calculations were performed with a larger basis set combination, in which the def2-TZVP basis set⁸ was used for Pd, and 6-311+G(d,p)^{9,10} for others. The SMD implicit solvation model¹¹ was used to account for the solvation effect of DMF when performing single point energy calculations.

References:

- Frisch, M.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; Others, Gaussian 09, revision D. 01. In Gaussian, Inc., Wallingford CT: 2009.
- 2. Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.*, 1999, **110**, 6158-6170.
- Grimme S., Antony J., Ehrlich S., Krieg H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.*, 2010, **132**, 154104.
- 4. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 299-310 (1985).
- 5. Theor. Chim. Acta, 28, 213-222 (1973).
- 6. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys., 56, 2257-2261 (1972).
- 7. Tian Lu, Qinxue Chen, Shermo: A general code for calculating molecular thermodynamic properties, ChemRxiv (2020) DOI: 10.26434/chemrxiv.12278801.
- Weigend F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297.
- 9. J. Comput. Chem., 4, 294-301 (1983).
- 10. J. Chem. Phys., 72, 650-654 (1980).
- 11. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *The Journal of Physical Chemistry B*, 2009, **113**, (18), 6378.

Possible pathways of (A) and (B) catalytic cycle.

OMe

Ph

Reductive elimination:

6: Experimental Characterization Data

4-Methoxybiphenyl (3a)

White solid, 78% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.57 (dd, J = 10.6, 8.1 Hz, 4H), 7.44 (t, J = 7.7 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 8.7 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.16 , 140.84 , 133.79 , 128.74 , 128.17 , 126.75 , 126.67 , 114.22 , 55.36 . HRMS (EI-TOF) calcd for C₁₃H₁₂O: 184.0888; Found: 184.0896. NMR spectroscopic data agreed with literature values.¹

4-Methylbiphenyl (3b)

White solid, 78% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 7.6 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.19, 138.39, 137.01, 129.48, 128.71, 127.00, 126.98, 21.09. HRMS (EI-TOF) calcd for C₁₃H₁₂: 168.0939; Found: 168.0940. NMR spectroscopic data agreed with literature values.¹

4-tert-Butylbiphenyl (3c)

White solid, 93% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.60 (m, 2H), 7.59 – 7.54 (m, 2H), 7.52 – 7.48 (m, 2H), 7.45 (t, J = 7.7 Hz, 2H), 7.37 – 7.32 (m, 1H), 1.39 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 150.29 , 141.11 , 138.35 , 128.71 , 127.04 ,

126.99, 126.81, 125.73, 34.55, 31.40. HRMS (EI-TOF) calcd for $C_{16}H_{18}$: 210.1409; Found: 210.1419. NMR spectroscopic data agreed with literature values.²

4-cyclohexyl-1,1'-biphenyl (**3d**) White solid, 91% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.60 (d, J = 7.7 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.44 (dd, J = 15.3 Hz, 2H), 7.34 (dd, J = 7.4 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H), 2.60 – 2.53 (m, 1H), 1.97 – 1.85 (m, 4H), 1.82 – 1.76 (m, 1H), 1.51 – 1.38 (m, 5H). ¹³C NMR (126 MHz,) δ 147.23 , 141.20 , 138.73 , 128.66 , 127.00 , 126.91 , 44.25 , 34.47 , 26.92 , 26.18 . **HRMS** (EI-TOF) calcd for C₁₈H₂₀: 236.1565; Found: 236.1563. NMR spectroscopic data agreed with literature values.³

4-(trifluoromethoxy)-1,1'-biphenyl (**3e**)

White solid, 82% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.65 – 7.56 (m, 4H), 7.47 (t, J = 7.6 Hz, 2H), 7.42 – 7.36 (m, 1H), 7.31 (d, J = 8.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 148.71 (q, 1.7 Hz), 140.02 , 139.89 , 128.91 , 128.48 , 127.68 , 127.13 , 121.23 , 120.58 (q, 257.0 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -62.51 . HRMS (EI-TOF) calcd for C₁₃H₉F₃O: 238.0605; Found: 238.0601. NMR spectroscopic data agreed with literature values.²

4-nitro-1,1'-biphenyl (3f)

Yellow solid, 26% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.32 (d, J = 8.9 Hz, 2H), 7.76 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 7.3 Hz, 2H), 7.55 – 7.44 (m, 3H). ¹³C NMR (126 MHz, **0**

2

 $CDCl_3$) δ 147.65, 138.80, 129.16, 128.91, 127.81, 127.39, 124.10. **HRMS** (EI-TOF) calcd for $C_{12}H_9NO_2$: 199.0633; Found: 199.0641. NMR spectroscopic data agreed with literature values.⁴

4-(trifluoromethyl)-1,1'-biphenyl (**3g**) White solid, 92% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.72 (s, 4H), 7.64 – 7.61 (m, 2H), 7.53 – 7.48 (m, 2H), 7.46 – 7.41 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 144.74 (q, J=1.0 Hz), 139.77 , 128.97 (q, J=32.5 Hz), 128.97 , 128.17 , 127.41 , 127.26 , 125.69 (q, J = 3.8 Hz), 124.32 (q, J = 271.9 Hz). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -62.41 . **HRMS** (EI-TOF) calcd for C₁₃H₉F₃: 222.0656; Found: 222.0659. NMR spectroscopic data agreed with literature values.¹

[1,1'-biphenyl]-4-carbonitrile (**3h**)

White solid, 70% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.73 (m, 2H), 7.72 – 7.69 (m, 2H), 7.63 – 7.58 (m, 2H), 7.52 – 7.48 (m, 2H), 7.47 – 7.42 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.73 , 139.23 , 132.62 , 129.13 , 128.68 , 127.76 , 127.25 , 118.93 , 110.98 . **HRMS** (EI-TOF) calcd for C₁₃H₉N: 179.0735; Found: 179.0739. NMR spectroscopic data agreed with literature values.¹

methyl [1,1'-biphenyl]-4-carboxylate (3i)

White solid, 72% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 7.2 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.4 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.02, 145.67, 140.04, 1

130.11, 128.93, 128.14, 127.29, 127.06, 52.11. **HRMS** (EI-TOF) calcd for $C_{14}H_{12}O_2$: 212.0837; Found: 212.0842. NMR spectroscopic data agreed with literature values.¹

3-methyl-1,1'-biphenyl (**3j**) White solid, 75% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.60 (dd, J = 8.3, 1.0 Hz, 2H), 7.50 – 7.31 (m, 6H), 7.18 (d, J = 7.5 Hz, 1H), 2.44 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 157.49 , 141.42 , 128.71 , 128.68 , 128.02 , 127.21 , 127.18 , 124.30 , 21.56 . **HRMS** (EI-TOF) calcd for C₁₃H₁₂: 168.0939; Found: 168.0940. NMR spectroscopic data agreed with literature values.⁵

3-nitro-1,1'-biphenyl (3k)

Yellow solid, 35% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.48 (s, 1H), 8.22 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.67 – 7.60 (m, 3H), 7.52 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 142.95, 138.74, 129.72, 129.20, 128.57, 127.20, 122.06, 122.01. HRMS (EI-TOF) calcd for C₁₂H₉NO₂: 199.0633; Found: 199.0641. NMR spectroscopic data agreed with literature values.⁶

3-(trifluoromethyl)-1,1'-biphenyl (31)

Yellow solid, 84% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.66 – 7.54 (m, 4H), 7.50 (t, J = 7.6 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H). ¹³C

NMR (126 MHz, CDCl₃) δ 142.05, 139.80, 131.21 (q, J = 32.2 Hz), 130.42, 129.22, 129.00, 128.03, 127.20, 125.30 (q, J=272.2 Hz), 123.96 (q, J = 3.6 Hz). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -62.60. **HRMS** (EI-TOF) calcd for C₁₃H₉F₃: 222.0656; Found: 222.0659. NMR spectroscopic data agreed with literature values.⁷

[1,1'-biphenyl]-3-carbonitrile (**3m**)

White solid, 65% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (dd, 1H, J=1.5 Hz, 2.0 Hz), 7.81 (m, 1H), 7.67 – 7.41 (m, 7H). ¹³**C NMR** (126 MHz, CDCl₃) δ 142.52 , 138.93 , 131.52 , 130.74 , 129.62 , 129.15 , 128.42 , 127.12 , 118.86 , 113.03 . **HRMS** (EI-TOF) calcd for C₁₃H₉N: 179.0735; Found: 179.0739. NMR spectroscopic data agreed with literature values.¹

methyl [1,1'-biphenyl]-3-carboxylate (**3n**) White solid, 77% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 8.31 (s, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.83 – 7.78 (m, 1H), 7.67 – 7.62 (m, 2H), 7.56 – 7.45 (m, 3H), 7.43 – 7.38 (m, 1H), 3.97 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 167.06, 141.50, 140.14, 131.53, 130.73, 128.89, 128.85, 128.35, 128.28, 127.75, 127.17, 52.18 . **HRMS** (EI-TOF) calcd for C₁₄H₁₂O₂: 212.0837; Found: 212.0842. NMR spectroscopic data agreed with literature values.⁸

2-methyl-1,1'-biphenyl (**30**)

White solid, 75% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 7.24 (m, 9H), 2.29 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 142.02 , 141.99 , 135.37 , 130.31 , 129.81 , 129.21 , 128.08 , 127.26 , 126.77 , 125.76 , 20.46 . **HRMS** (EI-TOF) calcd for C₁₃H₁₂: 168.0939; Found: 168.0940. NMR spectroscopic data agreed with literature values.¹

2-methoxy-1,1'-biphenyl (**3p**)

White solid, 91% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.53 (m, 2H), 7.47 – 7.41 (m, 2H), 7.40 – 7.32 (m, 3H), 7.09 – 7.01 (m, 2H), 3.84 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.50 , 138.57 , 130.89 , 130.78 , 129.54 , 128.60 , 127.96 , 126.89 , 120.84 , 111.29 , 55.56 . HRMS (EI-TOF) calcd for C₁₄H₁₂O₂: 212.0837; Found: 212.0845. NMR spectroscopic data agreed with literature values.¹

2-nitro-1,1'-biphenyl (**3q**) Yellow oil, 52% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 8.1 Hz, 1H), 7.53 – 7.41 (m, 5H), 7.37 – 7.30 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 149.34 , 137.39 , 136.36 , 132.24 , 131.95 , 128.67 , 128.22 , 128.14 , 127.89 , 124.05 . **HRMS** (EI-TOF) calcd for C₁₂H₉NO₂: 199.0633; Found: 199.0641. NMR spectroscopic data agreed with literature values.⁹

2-(trifluoromethyl)-1,1'-biphenyl (3r)

Yellow solid, 64% yield, ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 7.9 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.46 – 7.40 (m, 3H), 7.39 – 7.33 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 141.44 (q, J = 2.6 Hz), 139.86, 132.04, 131.28, 128.96, 128.47 (q, J = 29.7 Hz), 127.74, 127.61, 127.32, 126.05 (q, J = 5.3 Hz), 124.17 (q, J = 274.0 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -56.85. HRMS (EI-TOF) calcd for C₁₃H₉F₃: 222.0656; Found: 222.0661. NMR spectroscopic data agreed with literature values.¹⁰

[1,1'-biphenyl]-2-carbonitrile (**3s**) Yellow solid, 77% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (d, J = 7.8 Hz, 1H), 7.67 (t, J = 7.7 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.55 – 7.44 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 145.53 , 138.16 , 133.75 , 132.79 , 130.08 , 128.76 , 128.73 , 128.72 , 127.53 , 118.69 , 111.34 . **HRMS** (EI-TOF) calcd for C₁₃H₉N: 179.0735; Found: 179.0739. NMR spectroscopic data agreed with literature values.¹¹

methyl [1,1'-biphenyl]-2-carboxylate (3t)

White solid, 79% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 7.7, 1.0 Hz, 1H), 7.55 (td, J = 7.6, 1.3 Hz, 1H), 7.47 – 7.31 (m, 7H), 3.65 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.15, 142.50, 141.34, 131.24, 130.90, 130.71, 129.77, 128.32, 128.03, 127.22, 127.15, 51.91. HRMS (EI-TOF) calcd for C₁₄H₁₂O₂: 212.0837; Found: 212.0842. NMR spectroscopic data agreed with literature values.¹²

2-phenylnaphthalene (3aa)

White solid, 56% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.93 (t, J = 8.8 Hz, 2H), 7.89 (d, J = 7.4 Hz, 1H), 7.78 (dd, J = 8.5, 1.8 Hz, 1H), 7.75 (d, J = 7.1 Hz, 2H), 7.55 – 7.48 (m, 4H), 7.40 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.18, 138.62, 133.73, 132.67, 128.88, 128.43, 128.22, 127.67, 127.46, 127.37, 126.31, 125.95, 125.83, 125.63 . HRMS (EI-TOF) calcd for C₁₆H₁₂: 204.0939; Found: 204.0945. NMR spectroscopic data agreed with literature values.¹

3,4-dimethoxy-1,1'-biphenyl (**3ab**)

Yellow solid, 53% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.58 (d, J = 7.1 Hz, 2H), 7.44 (t, J = 7.7 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.19 – 7.13 (m, 2H), 6.97 (d, J = 8.3 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 149.19, 148.65, 141.06 , 134.29 , 128.71 , 126.85 , 126.83 , 119.41 , 111.56 , 110.56 , 56.00 , 55.96 . **HRMS** (EI-TOF) calcd for C₁₄H₁₄O₂: 214.0994; Found: 214.1004. NMR spectroscopic data agreed with literature values.¹³

2,4,6-triisopropyl-1,1'-biphenyl (**3ac**)

White solid, 67% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.44 – 7.34 (m, 3H), 7.21 (dd, J = 8.1, 1.3 Hz, 2H), 7.09 (s, 2H), 2.98 (hept, J = 7.0 Hz, 1H), 2.64 (hept, J = 6.9 Hz, 2H), 1.35 (d, J = 6.9 Hz, 6H), 1.11 (d, J = 6.9 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃)

 δ 147.84, 146.53, 140.93, 137.11, 129.85, 127.90, 126.39, 120.52, 34.30, 30.29, 24.23, 24.11. **HRMS** (EI-TOF) calcd for C₂₁H₂₈: 280.2191; Found: 280.2204. NMR spectroscopic data agreed with literature values.¹⁴

methyl 6-methyl-[1,1'-biphenyl]-2-carboxylate (3ad)

White solid, 53% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 7.3 Hz, 3H), 7.39 – 7.31 (m, 2H), 7.19 (d, J = 6.9 Hz, 2H), 3.56 (s, 3H), 2.14 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.74, 141.78, 140.25, 137.15, 133.02, 131.60 , 128.54, 127.86, 127.01, 126.93, 126.81, 51.68, 20.65. HRMS (EI-TOF) calcd for C₁₅H₁₄O₂: 226.0994; Found: 226.0993. NMR spectroscopic data agreed with literature values.¹⁵

3-phenylpyridine (3ae)

Brown oil, 45% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.89 (s, 1H), 8.62 (d, J =4.0 Hz, 1H), 7.94 (dd, J =8.0, 1.5 Hz, 1H), 7.71 – 7.41 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 147.93, 147.89, 137.61, 136.99, 134.92, 129.15, 128.27, 127.18, 123.78. HRMS (EI-TOF) calcd for C₁₁H₉N: 155.0735; Found: 155.0740. NMR spectroscopic data agreed with literature values.¹⁶

8-phenylquinoline (**3af**) 7 Yellow oil, 37% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 8.99 (dd, J = 4.1, 1.6 Hz, 1H), 8.24 (dd, J = 8.2, 1.6 Hz, 1H), 7.89 – 7.68 (m, 4H), 7.66 – 7.50 (m, 3H), 7.47 – 7.44 (m, 1H), 7.44 – 7.42 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 150.17, 145.86, 140.86 , 139.46, 136.43, 130.60, 130.42, 128.76, 128.02, 127.53, 127.41, 126.33, 120.98 . **HRMS** (EI-TOF) calcd for C₁₅H₁₁N: 205.0891; Found: 205.0897. NMR spectroscopic data agreed with literature values.¹⁷

methyl 3-phenylthiophene-2-carboxylate (3ag)

Colorless solid, 37% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 5.1 Hz, 1H), 7.50 – 7.38 (m, 5H), 7.11 (d, J = 5.1 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.48, 148.71, 135.70, 131.58, 130.19, 129.23, 127.93, 127.84, 126.96, 51.90. HRMS (EI-TOF) calcd for C₁₂H₁₀O₂S: 218.0402; Found: 218.0416. NMR spectroscopic data agreed with literature values.¹⁸

2,3-Dihydro-5-phenylbenzofuran (3ah)

Yellow oil, 65% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 7.1 Hz, 2H), 7.47 – 7.40 (m, 3H), 7.38 (d, J = 10.2 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 4.64 (t, J = 8.7 Hz, 2H), 3.29 (t, J = 8.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 141.35 , 133.99 , 128.67 , 127.60 , 127.07 , 126.79 , 126.49 , 123.76 , 109.44 , 71.44 , 29.77 . **HRMS** (EI-TOF) calcd for C₁₄H₁₂O: 196.0888; Found: 196.0896. NMR spectroscopic data agreed with literature values.²

4-methoxy-4'-methyl-1,1'-biphenyl (3ba)

White solid, 61% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.99 , 138.02 , 136.37 , 133.81 , 129.46 , 127.98 , 126.61 , 114.21 , 55.37 , 21.06 . HRMS (EI-TOF) calcd for C₁₄H₁₄O: 198.1045; Found: 198.1054. NMR spectroscopic data agreed with literature values.²

4-(tert-butyl)-4'-methoxy-1,1'-biphenyl (3bb)

White solid, 51% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J =8.0 Hz, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.52 (d, J = 2.1 Hz, 1H), 7.48 (d, J = 2.0 Hz, 1H), 7.46 (d, J = 2.0 Hz, 1H), 7.00 (d, J = 8.7 Hz, 1H), 3.87 (s, 3H), 1.39 (s, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 158.97, 149.63, 137.95, 133.68, 128.01, 126.37, 125.67, 114.17, 55.34, 34.49, 31.40. HRMS (EI-TOF) calcd for C₁₇H₂₀O: 240.1514; Found: 240.1525. NMR spectroscopic data agreed with literature values.¹⁹

4'-methoxy-3,5-dimethyl-1,1'-biphenyl (**3bc**)

White solid, 61% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 8.7 Hz, 2H), 7.20 (s, 2H), 6.99 (d, J = 4.5 Hz, 3H), 3.87 (s, 3H), 2.40 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 159.04 , 140.86 , 138.19 , 134.04 , 128.32 , 128.16 , 124.71 , 114.10 , 55.34 , 21.42 . HRMS (EI-TOF) calcd for C₁₅H₁₆O: 212.1201; Found: 212.1213. NMR spectroscopic data agreed with literature values.²⁰

4-fluoro-4'-methoxy-1,1'-biphenyl (3bd)

White solid, 62% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.45 (m, 4H), 7.16 – 7.08 (m, 2H), 7.01 – 6.97 (m, 2H), 3.87 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.12 (d, J = 245.5 Hz), 159.15 , 136.99 , 132.88 , 128.23 (d, J = 8.0 Hz), 128.04 , 115.53 (d, J = 21.4 Hz), 114.28 , 55.37 . ¹⁹F NMR (565 MHz, CDCl₃) δ -116.76 . HRMS (EI-TOF) calcd for C₁₃H₁₁OF: 202.0794; Found: 202.0803. NMR spectroscopic data agreed with literature values.¹

4-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl (**3be**)

White solid, 56% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.63 (m, 4H), 7.56 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.88, 144.33, 132.22, 128.73 (q, J = 32.5 Hz), 128.36, 126.89, 125.68 (q, J = 3.8 Hz), 124.40 (q, J = 272.2 Hz), 114.46, 55.41 . ¹⁹F NMR (565 MHz, CDCl₃) δ -62.33 . HRMS (EI-TOF) calcd for C₁₄H₁₁OF₃: 252.0762; Found: 252.0770. NMR spectroscopic data agreed with literature values.¹

2-(4-methoxyphenyl)naphthalene (3bf)

White solid, 50% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.01 (s, 1H), 7.94 – 7.85 (m, 3H), 7.74 (dd, J = 8.5, 1.7 Hz, 1H), 7.69 (d, J = 8.7 Hz, 2H), 7.55 – 7.45 (m, 3H), 7.05 (d, J = 8.7 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.31 , 138.20 , 133.80 , 133.69 , 132.36 , 128.45 , 128.35 , 128.07 , 127.64 , 126.24 , 125.66 , 125.46 , 125.06 , 114.37 , 55.41 . HRMS (EI-TOF) calcd for C₁₇H₁₄O: 234.1045; Found: 234.1053. NMR spectroscopic data agreed with literature values.¹⁹

4-methoxy-4'-nitro-1,1'-biphenyl (3bg)

White solid, 37% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.28 (d, J = 8.9 Hz, 2H), 7.71 (d, J = 8.9 Hz, 2H), 7.62 – 7.58 (m, 2H), 7.04 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.48 , 147.23 , 146.59 , 131.12 , 128.58 , 127.08 , 124.15 , 114.64 , 55.44 . HRMS (EI-TOF) calcd for C₁₃H₁₁NO₃: 229.0739; Found: 229.0753. NMR spectroscopic data agreed with literature values.²¹

4'-methoxy-[1,1'-biphenyl]-4-carbonitrile (**3bh**)

White solid, 32% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.63 (m, 4H), 7.55 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.21, 145.22, 132.54, 131.51, 128.34, 127.09, 119.04, 114.55, 110.12, 55.39. HRMS (EI-TOF) calcd for C₁₄H₁₁NO: 209.0841; Found: 209.0857. NMR spectroscopic data agreed with literature values.¹

3,5-dimethyl-4'-(trifluoromethyl)-1,1'-biphenyl (3ca)

White solid, 72% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.65 (m, 4H), 7.23 (s, 2H), 7.07 (s, 1H), 2.41 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 145.04 , 139.82 , 138.57 , 129.81 , 127.43 , 125.59 (q, J = 3.8 Hz), 125.21 , 21.39 . ¹⁹F NMR (565 MHz, CDCl₃) δ -62.35 . HRMS (EI-TOF) calcd for C₁₅H₁₃F₃: 250.0969; Found: 250.0980. NMR spectroscopic data agreed with literature values.²²

methyl 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-carboxylate (**3cb**) White solid, 64% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 2H), 7.74 (s, 4H), 7.68 (d, J = 8.4 Hz, 2H), 3.97 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.77 , 144.10 , 143.57 , 130.35 (q, J = 32.8 Hz), 130.29 , 129.87 , 127.64 , 127.28 , 125.89 (q, J = 3.8 Hz), 125.25 (q, J = 272.4 Hz), 52.25 . ¹⁹F NMR (565 MHz, CDCl₃) δ -62.54 . HRMS (EI-TOF) calcd for C₁₅H₁₁O₂F₃: 280.0711; Found: 280.0719. NMR spectroscopic data agreed with literature values.²³

4'-(trifluoromethyl)-[1,1'-biphenyl]-4-carbonitrile (**3cc**)

White solid, 85% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.73 – 7.70 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 144.17, 142.70 , 132.80 , 130.76 (q, J = 32.8 Hz), 127.98 , 127.64 , 126.09 (q, J = 3.8 Hz), 125.10 (q, J = 272.7 Hz), 118.55 , 112.06 . ¹⁹F NMR (565 MHz, CDCl₃) δ -62.64 . HRMS (EI-TOF) calcd for C₁₄H₈NF₃: 247.0609; Found: 247.0604. NMR spectroscopic data agreed with literature values.²⁴

4'-(tert-butyl)-3-(trifluoromethyl)-1,1'-biphenyl (3cd)

Yellow solid, 80% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 1H), 7.78 (s, 1H), 7.61 – 7.50 (m, 6H), 1.39 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 151.22 , 141.90 , 136.88 , 131.27 (q, J = 32.1 Hz), 130.24 , 129.16 , 126.86 , 125.97 , 123.82 (q, J = 3.7 Hz), 123.66 (q, J = 3.6 Hz), 34.64 , 31.35 . ¹⁹F NMR (565 MHz, CDCl₃) δ -62.16 . HRMS (EI-TOF) calcd for C₁₇H₁₇F₃: 278.1282; Found: 278.1287. NMR spectroscopic data agreed with literature values.²⁵

5-(4-(trifluoromethyl)phenyl)-1*H*-indole (**3ce**)

Yellow oil, 57% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, J = 8.3, 3.9 Hz, 3H), 7.71 (d, J = 8.4 Hz, 2H), 7.60 – 7.53 (m, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 3.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.61 , 135.40 (q, J = 33.2 Hz), 134.83 , 130.87 , 127.28 , 126.46 (q, J = 3.7 Hz), 126.11 , 125.05 , 123.85 , 122.91 (q, J = 273.0 Hz), 121.68 , 113.46 , 110.16 . ¹⁹F NMR (565 MHz, CDCl₃) δ -63.37 . HRMS (EI-TOF) calcd for C₁₅H₁₀NF₃: 261.0765; Found: 261.0778.

2-(4-(trifluoromethyl)phenyl)dibenzo[b,d]furan (3cf)

White solid, 78% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 7.98 (m, 4H), 7.82 (d, J = 8.2 Hz, 2H), 7.66 – 7.60 (m, 2H), 7.53 – 7.46 (m, 2H), 7.41 (t, J = 7.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.21 , 153.32 , 140.06 , 129.08 , 127.52 , 126.82 , 125.60 (q, J = 3.8 Hz), 125.42 (q, J = 272.5 Hz), 125.23 , 124.21 (q, J = 46.6 Hz), 123.36 , 123.03 , 120.78 , 120.63 , 111.87 . ¹⁹F NMR (565 MHz, CDCl₃) δ -62.48 . HRMS (EITOF) calcd for C₁₉H₁₁OF₃: 312.0762; Found: 312.0768.

2-(4-(trifluoromethyl)phenyl)dibenzo[b,d]thiophene (3cg)

White solid, 71% yield, ¹**H** NMR (500 MHz, CDCl₃) δ 8.26 – 8.20 (m, 2H), 7.90 – 7.84 (m, 3H), 7.80 (d, J = 8.2 Hz, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.53 – 7.48 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.17, 139.38, 138.47, 136.52, 135.64, 135.56, 130.10 (q, J = 32.8 Hz), 128.67, 127.07, 126.98, 125.81 (q, J = 3.7 Hz), 125.22, 124.61, 123.12 (q, J = 272.4 Hz), 122.67, 121.83, 121.22. ¹⁹F NMR (565 MHz, CDCl₃) δ - 62.48. HRMS (EI-TOF) calcd for C₁₉H₁₁F₃S: 328.0534; Found: 328.0530.

1-(4-(trifluoromethyl)phenyl)pyrene (3ch)

White solid, 82% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.28 – 8.20 (m, 3H), 8.14 (d, J = 2.0 Hz, 2H), 8.10 – 8.04 (m, 3H), 7.97 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 144.99 , 136.02 , 131.48 , 131.12 , 130.91 , 129.63 , 129.38 , 128.45 , 128.01 , 127.88 , 127.36 , 126.22 , 125.47 , 125.36 (q, J = 3.7 Hz), 125.15 , 124.89 (q, J = 16.1 Hz), 124.71 , 124.64 , 122.34 (q, J = 297.6 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -62.31 . HRMS (EI-TOF) calcd for C₂₃H₁₃F₃: 346.0969; Found: 346.0976. NMR spectroscopic data agreed with literature values.²⁶

[1,1'-biphenyl]-4-sulfonyl fluoride (A1) White solid, 82% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 8.5 Hz, 2H), 7.84 (d, J = 8.3 Hz, 2H), 7.67 – 7.63 (m, 2H), 7.58 – 7.46 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.64 , 138.50 , 131.37 (d, J = 24.5 Hz), 129.26 , 129.21 , 128.98 , 128.19 , 127.45 . ¹⁹F NMR (565 MHz, CDCl₃) δ 66.51 . HRMS (EI-TOF) calcd for C₁₂H₉FO₂S: 236.0307; Found: 236.0302. NMR spectroscopic data agreed with literature values.²⁷

2,4-dimethoxy-1,1':4',1"-terphenyl (A2)

White solid, 73% yield, ¹**H NMR** (500 MHz, CDCl₃) δ 7.69 – 7.58 (m, 6H), 7.50 – 7.43 (m, 2H), 7.40 – 7.34 (m, 1H), 7.34 – 7.30 (m, 1H), 6.62 (s, 1H), 6.61 (s, 1H), 4

3.89 (s, 3H), 3.85 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.50 , 157.65 , 141.20 , 139.40 , 137.49 , 131.28 , 129.87 , 128.80 , 127.16 , 126.83 , 123.25 , 104.84 , 99.17 , 55.67 , 55.52 . HRMS (EI-TOF) calcd for C₂₀H₁₈O₂: 290.1307; Found: 290.1312.

7. References

1. T. Zhou, P. P. Xie, C. L. Ji, X. Hong and M. Szostak, *Org. Lett.*, 2020, **22**, 6434-6440.

2. Q. Chen, S. Wu, S. Yan, C. Li, H. Abduhulam, Y. Shi, Y. Dang and C. Cao, *ACS Catal.*, 2020, **10**, 8168-8176.

3. Y. Sato, K. Nakamura, Y. Sumida, D. Hashizume, T. Hosoya and H. Ohmiya, *J. Am. Chem. Soc.*, 2020, **142**, 9938-9943.

4. J. H. Li and W. J. Liu, Org. Lett., 2004, 6, 2809-2811.

5. P. D. Stevens, J. D. Fan, H. M. R. Gardimalla, M. Yen and Y. Gao, *Org. Lett.*, 2005, 7, 2085-2088.

6. L. Wu, B. L. Li, Y. Y. Huang, H. F. Zhou, Y. M. He and Q. H. Fan, *Org. Lett.*, 2006, **8**, 3605-3608.

7. Z. T. Zhang, J. P. Pitteloud, L. Cabrera, Y. Liang, M. Toribio and S. F. Wnuk, *Org. Lett.*, 2010, **12**, 816-819.

8. S. B. Tailor, M. Manzotti, G. J. Smith, S. A. Davis and R. B. Bedford, *ACS Catal.*, 2021, **11**, 3856-3866.

9. F. L. Zhou, F. J. Zhou, R. C. Su, Y. D. Yang and J. S. You, *Chem. Sci.*, 2020, **11**, 7424-7428.

10. L. L. Chu and F. L. Qing, Org. Lett., 2010, 12, 5060-5063.

11. W. J. Zhou, K. H. Wang and J. X. Wang, J. Org. Chem., 2009, 74, 5599-5602.

12. H. Chen, Z. B. Huang, X. M. Hu, G. Tang, P. X. Xu, Y. F. Zhao and C. H. Cheng, *J. Org. Chem.*, 2011, **76**, 2338-2344.

13. N. Kaloglu and I. Ozdemir, Tetrahedron, 2019, 75, 2306-2313.

14. F. Y. Kwong, K. S. Chan, C. H. Yeung and A. S. C. Chan, *Chem. Commun.*, 2004, 2336-2337.

15. L. B. Huang, L. K. G. Ackerman, K. Kang, A. M. Parsons and D. J. Weix, *J. Am. Chem. Soc.*, 2019, **141**, 10978-10983.

16. E. Alacid and C. Najera, Org. Lett., 2008, 10, 5011-5014.
17. Y. D. Zhang, J. Gao, W. J. Li, H. Lee, B. Z. Lu and C. H. Senanayake, *J. Org. Chem.*, 2011, **76**, 6394-6400.

18. M. Raduan, J. Padrosa, A. Pla-Quintana, T. Parella and A. Roglans, *Adv. Synth. Catal.*, 2011, **353**, 2003-2012.

19. X. W. Yi, K. Chen, J. J. Guo, W. Chen and W. Z. Chen, *Adv. Synth. Catal.*, 2020, **362**, 4373-4377.

20. X. M. Li, T. T. Zhang, R. Hu, H. Zhang, C. Y. Ren and Z. L. Yuan, *Org. Biomol. Chem.*, 2020, **18**, 4748-4753.

21. G. Rizzo, G. Albano, M. Lo Presti, A. Milella, F. G. Omenetto and G. M. Farinola, *Eur. J. Org. Chem.*, 2020, **2020**, 6992-6996.

22. C. M. So, H. W. Lee, C. P. Lau, and F. Y. Kwong, Org. Lett., 2009, 11, 317-320.

23. T. L. Zhou, C. L. Ji, X. Hong and M. Szostak, Chem. Sci., 2019, 10, 9865-9871.

24. L. A. Zhang, T. H. Meng and J. Wu, J. Org. Chem., 2007, 72, 9346-9349.

25. D. Wang, H. G. Chen, X. C. Tian, X. X. Liang, F. Z. Chen and F. Gao, *Rsc. Adv.*, 2015, **5**, 107119-107122.

26. M. Beinhoff, W. Weigel, M. Jurczok, W. Rettig, C. Modrakowski, I. Brudgam, H. Hartl and A. D. Schluter, *Eur. J. Org. Chem.*, 2001, **2001**, 3819-3829.

27. P. K. Chinthakindi, H. G. Kruger, T. Govender, T. Naicker, and P. I. Arvidsson, *J. Org. Chem.*, 2016, **81**, (6), 2618-2623.

8: Copies of ¹H and ¹³C spectra for coupling products.

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.

)0

¹³C NMR (126 MHz, CDCl₃)

)0

¹³C NMR (126 MHz, CDCl₃)

ò

¹H NMR (500 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR (500 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹⁹F NMR (565 MHz, CDCl₃)

- 62.41

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (126 MHz, CDCl₃)

ò)0 110 100 160 150 140 130

¹³C NMR (126 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

6

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

¹³C NMR (126 MHz, CDCl₃)

8

IO 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹³C NMR (126 MHz, CDCl₃)

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR (500 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹H NMR (500 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹⁹F NMR (565 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

^{50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5}

¹³C NMR (126 MHz, CDCl₃)

160 150 140 130 120

¹³C NMR (126 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹³C NMR (126 MHz, CDCl₃)

130 120 110 ò 170 160 150 140

¹³C NMR (126 MHz, CDCl₃)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

2

¹³C NMR (126 MHz, CDCl₃)

3

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

¹³C NMR (126 MHz, CDCl₃)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

¹³C NMR (126 MHz, CDCl₃)

170 160 150 140 130 120 110 100 ò

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

180 170 160 150 140 130 120 110

¹H NMR (500 MHz, CDCl₃)

1

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹H NMR (500 MHz, CDCl₃)

7

¹⁹F NMR (565 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹⁹F NMR (565 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹H NMR (500 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹⁹F NMR (565 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

180 170 160 150 140 130 120 ò

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0}

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹⁹F NMR (565 MHz, CDCl₃)

--62.31

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹³C NMR (126 MHz, CDCl₃)

-SO2F

170 160 150 140 130 120 110 ò

-66.51

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50

¹H NMR (500 MHz, CDCl₃)

9

9. Table of Energies

Zero-point correction (ZPE), thermal correction to enthalpy (TCH), thermal correction to Gibbs free energy (TCG), energies (E), enthalpies (H), and Gibbs free energies (G) (in Hartree) of the structures calculated at the PBE0-D3BJ/6-311+G(d,p)/def2-TZVP//PBE0-D3BJ/6-31G(d)/def2-SVP/SMD (N,N-Dimethylformamide) level of theory.

Structures	ZPE	tcH	tcG	Е	н	G	Imaginary Frequency
ArPh	0.216580	0.228929	0.178610	-576.947854	-576.946910	-576.997229	
ArSO ₂ F	0.137999	0.149736	0.100385	-993.660753	-993.659808	-993.709159	
B(OH) ₂ F	0.037103	0.042084	0.010799	-276.169507	-276.168563	-276.199848	
PhB(OH) ₂	0.126277	0.135089	0.092818	-407.667587	-407.666643	-407.708914	
BSO ₂ F	0.046692	0.055178	0.013485	-824.433963	-824.433019	-824.474713	
LPd	0.679528	0.715931	0.611707	-1785.329850	-1785.328906	-1785.433129	
SO ₂	0.007028	0.011044	-0.017171	-548.266346	-548.265402	-548.293617	
Int1	0.818640	0.867524	0.733815	-2779.038108	-2779.037164	-2779.170874	
Ts1	0.818200	0.866489	0.735508	-2779.003322	-2779.002378	-2779.133359	51.21i
Int2	0.818392	0.867829	0.732860	-2779.036416	-2779.035472	-2779.170441	
Ts2	0.947492	1.004156	0.857498	-3186.708198	-3186.707254	-3186.853912	241.83i
Int3	0.896467	0.945201	0.814389	-2362.266610	-2362.265666	-2362.396477	
Ts3	0.895410	0.944661	0.809758	-2362.258645	-2362.257701	-2362.392603	298.14i

Table S11. Energies for all calculated species.

Ts4	0.817763	0.866641	0.731075	-2778.990619	-2778.989674	-2779.125240	106.01i
Int4	0.819982	0.868667	0.737361	-2779.046586	-2779.045642	-2779.176948	
Ts5	0.818203	0.866852	0.735731	-2779.003357	-2779.002412	-2779.133532	48.79i
Int5	0.808477	0.853966	0.729878	-2230.737494	-2230.736550	-2230.860638	
Ts6	0.937677	0.990946	0.852133	-2638.423963	-2638.423019	-2638.561832	74.24i

10. Cartesian Coordinates of the Structures

ArPh

С	0.14887	0.0862	-0.02947
С	-0.5041	1.27327	-0.39519
С	-0.64621	-1.00947	0.31264
С	-1.88456	1.35892	-0.41741
Н	0.08567	2.13609	-0.69286
С	-2.03648	-0.94106	0.29548
Н	-0.1708	-1.93458	0.62775
С	-2.66415	0.25026	-0.07144
Н	-2.38861	2.27445	-0.71102
Н	-2.61398	-1.81365	0.58001
0	-4.00664	0.43117	-0.12302
С	-4.82576	-0.66273	0.21355
Н	-4.66025	-0.98787	1.24927
Н	-5.85428	-0.31426	0.10684
Н	-4.6608	-1.51376	-0.46057
С	1.62267	0.00108	-0.00533
С	2.28345	-1.16483	-0.41281
С	2.39833	1.0846	0.4265
С	3.67086	-1.24656	-0.38565
Н	1.7004	-2.00525	-0.7802
С	3.78601	1.00578	0.44914
Н	1.90349	1.98811	0.77298
С	4.42919	-0.16092	0.04445
Н	4.16247	-2.15882	-0.71311
Н	4.3674	1.85645	0.79479
Н	5.51367	-0.22338	0.0635

ArSO₂F

С	-0.51707	0.05795	0.08122
С	0.06451	1.32861	0.05627
С	0.26325	-1.09302	0.07533
С	1.44023	1.4375	0.01785
Н	-0.56449	2.21237	0.08014
С	1.64724	-0.9834	0.03755
Н	-0.21231	-2.06766	0.11258
С	2.24032	0.28448	0.00526
Н	1.9295	2.40562	0.00239
Н	2.25029	-1.88365	0.03884
S	-2.25975	-0.08951	0.12433

0	-2.63912	-1.4012	0.59312
0	-2.85069	1.12301	0.63838
F	-2.58284	-0.08767	-1.45181
0	3.56691	0.50044	-0.03186
С	4.4258	-0.62068	-0.04273
Н	4.25299	-1.24718	-0.9265
Н	5.43912	-0.2195	-0.07633
Н	4.30394	-1.22551	0.86433

B(OH)₂F

В	0.01519	0.02077	0.00001
0	-0.69434	-1.14387	0.00003
Н	-1.64444	-0.97737	-0.00026
0	1.36956	0.0168	-0.00005
Н	1.70574	-0.88744	0.00025
F	-0.61545	1.1975	0.00002

PhB(OH)₂

В	-1.74292	-0.00196	-0.00596
0	-2.51699	1.11899	0.14791
Н	-1.99052	1.91009	0.30682
0	-2.38281	-1.19715	-0.15668
Н	-3.33973	-1.07116	-0.11257
С	-0.17762	0.01166	-0.00936
С	0.56151	1.19913	-0.08555
С	0.53118	-1.19519	0.07033
С	1.9523	1.19089	-0.07824
Н	0.05158	2.15901	-0.16985
С	1.92152	-1.21453	0.08229
Н	-0.02592	-2.12657	0.12358
С	2.63443	-0.01998	0.00889
Н	2.50426	2.12479	-0.14241
Н	2.45228	-2.16073	0.14736
Н	3.72121	-0.0322	0.01692

BSO₂F

В	1.46039	0.09407	0.0565
0	2.56658	0.763	-0.35705
Н	2.34563	1.63258	-0.71352
0	1.5304	-1.15523	0.58074
Н	2.43833	-1.48278	0.58994

S	-1.15616	-0.08803	0.35938
0	-2.21078	0.88971	0.20182
0	0.2194	0.72402	-0.04841
F	-1.15912	-0.99819	-0.99176

LPd

С	1.01485	0.26738	1.52404
С	1.56278	0.39557	2.80067
С	0.77826	0.27555	3.94302
С	-0.58363	0.03518	3.8105
С	-1.14585	-0.08102	2.54286
С	-0.37525	0.03296	1.38064
С	1.87491	0.43117	0.32235
С	1.86823	1.71342	-0.31672
С	2.41926	1.85539	-1.62127
С	3.04244	0.73239	-2.21409
С	3.13424	-0.47891	-1.55239
С	2.53131	-0.62891	-0.2895
Н	2.62315	0.61434	2.89058
Н	1.22832	0.37855	4.92654
Н	-1.21427	-0.06149	4.69021
Н	-2.20937	-0.26592	2.46485
Н	2.54338	2.83803	-2.06471
Н	3.49501	0.8471	-3.19536
Н	3.6131	-1.3388	-2.00844
0	2.46085	-1.88039	0.26819
С	3.39502	-2.16398	1.3195
С	4.70438	-2.65465	0.72624
С	2.72903	-3.17761	2.22602
Н	3.57321	-1.2369	1.87925
Н	5.1349	-1.89761	0.0626
Н	5.43212	-2.87223	1.51593
Н	4.5356	-3.56882	0.14634
Н	1.81311	-2.7573	2.65202
Н	2.46925	-4.07893	1.65999
Н	3.39899	-3.46353	3.04374
0	1.54585	2.74655	0.50328
С	1.04013	3.96111	-0.05722
С	2.15042	4.99532	-0.12857
С	-0.11078	4.38999	0.83208
Н	0.65058	3.73675	-1.06217
Н	2.98351	4.64734	-0.74701
Н	1.77511	5.93388	-0.55083

Н	2.53708	5.19897	0.87607
Н	-0.88007	3.61264	0.84546
Н	0.24156	4.54726	1.85725
Н	-0.55413	5.3228	0.4676
Р	-1.10212	-0.10179	-0.31849
Pd	0.1718	1.23759	-1.6681
С	-2.95709	0.07221	-0.18339
С	-3.83049	-1.00432	0.47252
С	-3.29859	1.47862	0.32722
Н	-3.21646	0.0638	-1.25497
С	-5.3137	-0.67118	0.30048
Н	-3.61303	-1.10088	1.54244
Н	-3.62092	-1.98216	0.02798
С	-4.78645	1.78319	0.17255
Н	-3.01633	1.56992	1.38481
Н	-2.69616	2.21466	-0.22089
С	-5.64569	0.71545	0.84403
Н	-5.92572	-1.43587	0.795
Н	-5.56799	-0.70891	-0.7692
Н	-5.01033	2.77399	0.58712
Н	-5.03549	1.82572	-0.89796
Н	-6.71097	0.9357	0.70247
Н	-5.46247	0.73228	1.92888
С	-0.72811	-1.87427	-0.75695
С	-0.85972	-2.92336	0.34761
С	-1.45579	-2.29606	-2.03611
Н	0.34052	-1.8142	-1.00326
С	-0.33951	-4.27061	-0.15137
Н	-1.90615	-3.0289	0.66221
Н	-0.2905	-2.60613	1.22677
С	-0.94626	-3.65371	-2.51756
Н	-2.53793	-2.36284	-1.85232
Н	-1.3104	-1.53399	-2.81313
С	-1.06027	-4.71265	-1.4231
Н	-0.44674	-5.0301	0.63376
Н	0.73602	-4.17157	-0.35575
Н	-1.49677	-3.96636	-3.41387
Н	0.10807	-3.55116	-2.81258
Н	-0.65944	-5.6704	-1.77816
Н	-2.12364	-4.88233	-1.19543

SO₂

S

0.	0.	0.36915

6

0	0.	-1.25299	-0.36915
0	0.	1.25299	-0.36915

Int1

С	-0.90733	0.76585	2.32827
С	-1.08732	1.27217	3.62161
С	-1.99311	2.29227	3.88025
С	-2.74462	2.8263	2.8375
С	-2.56552	2.34327	1.54693
С	-1.64666	1.32201	1.26603
С	0.04458	-0.37317	2.18166
С	1.42365	-0.1763	2.41295
С	2.2905	-1.27031	2.48081
С	1.79906	-2.55589	2.27041
С	0.45695	-2.77309	1.99251
С	-0.41922	-1.68377	1.96318
Н	-0.49953	0.84824	4.43127
Н	-2.11471	2.66574	4.89328
Н	-3.46388	3.61861	3.02603
Н	-3.15283	2.76729	0.74056
Н	3.34667	-1.12701	2.67279
Н	2.48287	-3.39906	2.30755
Н	0.0699	-3.76413	1.78677
0	-1.75278	-1.88467	1.72496
С	-2.57675	-1.99407	2.90134
С	-2.52552	-3.40782	3.45179
С	-3.96836	-1.56821	2.48502
Н	-2.19363	-1.29026	3.65253
Н	-1.50454	-3.68237	3.73433
Н	-3.1591	-3.4941	4.3414
Н	-2.88196	-4.11954	2.69912
Н	-3.95866	-0.53089	2.13932
Н	-4.3318	-2.20669	1.67195
Н	-4.66341	-1.65156	3.32667
0	1.79831	1.11522	2.55253
С	3.18382	1.46306	2.49597
С	3.79836	1.39357	3.88449
С	3.23312	2.85859	1.90671
Н	3.69156	0.77288	1.81073
Н	3.71354	0.39102	4.3149
Н	4.85935	1.66313	3.84861
Н	3.28553	2.09397	4.55252
Н	2.75934	2.86523	0.92172

Н	2.70015	3.56426	2.55286
Н	4.27072	3.18997	1.79964
Р	-1.30656	0.73367	-0.43581
Pd	0.49561	-0.68596	-0.54039
С	-1.01307	2.25995	-1.46792
С	-2.16567	3.18047	-1.87393
С	0.125	3.05641	-0.8169
Н	-0.61187	1.81649	-2.3936
С	-1.66536	4.29669	-2.79237
Н	-2.62184	3.6349	-0.98538
Н	-2.94963	2.6119	-2.38439
С	0.6085	4.18289	-1.72593
Н	-0.22902	3.47854	0.13373
Н	0.94852	2.37494	-0.56895
С	-0.54092	5.09694	-2.14114
Н	-2.49834	4.95678	-3.06432
Н	-1.29835	3.85229	-3.72939
Н	1.3924	4.76184	-1.2199
Н	1.06746	3.74971	-2.62803
Н	-0.18352	5.87881	-2.82248
Н	-0.93185	5.60925	-1.24981
С	-2.84907	-0.12817	-1.00449
С	-4.21024	0.52975	-0.7696
С	-2.67625	-0.55647	-2.46733
Н	-2.81017	-1.03866	-0.38763
С	-5.33739	-0.40526	-1.20994
Н	-4.2869	1.46778	-1.33361
Н	-4.33122	0.78594	0.28839
С	-3.81594	-1.47319	-2.9056
Н	-2.65855	0.33349	-3.11478
Н	-1.71116	-1.06408	-2.59235
С	-5.17734	-0.82522	-2.66864
Н	-6.30841	0.0812	-1.05308
Н	-5.32761	-1.30148	-0.57251
Н	-3.69391	-1.74114	-3.96204
Н	-3.75441	-2.41047	-2.33431
Н	-5.98325	-1.51065	-2.9586
Н	-5.27295	0.06234	-3.31218
С	2.14944	-1.72871	-1.5061
С	3.35055	-1.7772	-0.73696
С	1.78881	-0.52711	-2.21576
С	4.12129	-0.65765	-0.60579
Н	3.64245	-2.71275	-0.27338
С	2.65484	0.60208	-2.08844

Н	1.14846	-0.59576	-3.09098
С	3.76681	0.54521	-1.27698
Н	5.03458	-0.6663	-0.01948
Н	2.41822	1.49221	-2.66047
S	1.50407	-3.25088	-2.09977
0	0.76953	-3.04926	-3.33009
0	2.4781	-4.31085	-1.9487
F	0.36439	-3.61063	-1.00503
0	4.62433	1.57405	-1.06108
С	4.37375	2.77955	-1.74321
Н	3.39567	3.19838	-1.47356
Н	5.15998	3.47135	-1.43682
Н	4.41539	2.63906	-2.83136

Ts1

С	0.64456	2.46889	0.29373
С	0.60955	3.83024	0.62347
С	1.55022	4.39309	1.47564
С	2.55841	3.59591	2.00942
С	2.58618	2.23779	1.71664
С	1.62982	1.64832	0.87658
С	-0.32088	2.01722	-0.74975
С	-1.71468	2.0724	-0.52771
С	-2.60413	1.93176	-1.59791
С	-2.11507	1.66845	-2.873
С	-0.75279	1.53218	-3.10422
С	0.13966	1.72608	-2.04934
Н	-0.16506	4.45095	0.18145
Н	1.50417	5.45295	1.71028
Н	3.31431	4.02576	2.6608
Н	3.36577	1.62325	2.15101
Н	-3.67344	2.00286	-1.4434
Н	-2.81618	1.54486	-3.69363
Н	-0.3599	1.27931	-4.08265
Ο	1.48257	1.60845	-2.26641
С	2.18493	2.83455	-2.54321
С	1.92966	3.29427	-3.96776
С	3.64479	2.54188	-2.27236
Н	1.82993	3.59927	-1.83881
Н	0.86595	3.48746	-4.13755
Н	2.47833	4.22069	-4.17001
Н	2.26316	2.52969	-4.67804
Н	3.78549	2.26559	-1.2244

Н	3.98614	1.71316	-2.90237
Н	4.25958	3.42143	-2.48874
0	-2.08564	2.26826	0.75963
С	-3.46296	2.15193	1.12235
С	-4.16527	3.48637	0.93371
С	-3.47469	1.6834	2.56437
Н	-3.93003	1.37962	0.49784
Н	-4.09231	3.83386	-0.10138
Н	-5.22595	3.40384	1.19374
Н	-3.70699	4.24251	1.58021
Н	-3.00728	0.69824	2.64903
Н	-2.92054	2.38499	3.19669
Н	-4.50366	1.62046	2.93459
Р	1.50178	-0.16533	0.6575
Pd	-0.36646	-0.77171	-0.59612
С	1.15955	-0.78283	2.38375
С	2.19891	-0.55916	3.48261
С	-0.20757	-0.24872	2.82799
Н	1.0561	-1.86801	2.22772
С	1.75506	-1.22721	4.78528
Н	2.31214	0.51731	3.66295
Н	3.17917	-0.94349	3.17844
С	-0.65357	-0.89077	4.13905
Н	-0.15035	0.84236	2.94706
Н	-0.94871	-0.43493	2.03885
С	0.39274	-0.70699	5.23515
Н	2.50618	-1.05757	5.56677
Н	1.69882	-2.31497	4.63309
Н	-1.61615	-0.46813	4.45544
Н	-0.81973	-1.9658	3.97345
Н	0.07596	-1.21114	6.15645
Н	0.4786	0.36336	5.47358
С	3.11608	-0.86943	0.0854
С	4.43842	-0.22577	0.50044
С	3.12948	-2.37324	0.39462
Н	3.0176	-0.76264	-1.00394
С	5.59336	-0.90038	-0.24251
Н	4.59325	-0.33371	1.58346
Н	4.43684	0.84685	0.28143
С	4.27721	-3.05148	-0.34696
Н	3.26159	-2.51894	1.4767
Н	2.17976	-2.83539	0.10993
С	5.61766	-2.40824	-0.00114
Н	6.54649	-0.44775	0.05894

Н	5.47811	-0.7065	-1.31881
Н	4.29307	-4.12166	-0.10804
Н	4.08595	-2.97336	-1.4257
Н	6.42688	-2.87042	-0.57996
Н	5.84367	-2.59667	1.05933
С	-1.95725	-2.04422	-1.13051
С	-2.85645	-1.42839	-2.00877
С	-2.34159	-2.36734	0.17739
С	-4.12515	-1.10735	-1.56674
Н	-2.53448	-1.2082	-3.02062
С	-3.61709	-2.03288	0.62776
Н	-1.65224	-2.91511	0.8126
С	-4.50182	-1.3887	-0.24351
Н	-4.84636	-0.6199	-2.21538
Н	-3.90975	-2.28625	1.64039
S	-0.29581	-2.80292	-1.80509
0	-0.09902	-3.97953	-0.95934
0	-0.65536	-2.90005	-3.21877
F	1.3323	-2.34491	-2.05158
0	-5.74611	-0.98884	0.09997
С	-6.18413	-1.25103	1.41458
Н	-5.54571	-0.75392	2.15647
Н	-7.19598	-0.84867	1.47979
Н	-6.20796	-2.32815	1.6219

Int2

С	-2.28827	-0.64709	1.62408
С	-3.21789	-1.0627	2.58266
С	-3.37334	-0.37374	3.7779
С	-2.58752	0.74648	4.03444
С	-1.64745	1.15784	3.09727
С	-1.48033	0.47461	1.8842
С	-2.18121	-1.39391	0.35003
С	-1.63073	-2.68413	0.32128
С	-1.48046	-3.35824	-0.89929
С	-1.81896	-2.72467	-2.08563
С	-2.33521	-1.42638	-2.08706
С	-2.53596	-0.77715	-0.86548
Н	-3.82161	-1.94121	2.37335
Н	-4.1043	-0.71004	4.50783
Н	-2.69868	1.29539	4.96525
Н	-1.02841	2.02038	3.31781
Н	-1.06164	-4.35662	-0.93622

Н	-1.63936	-3.2206	-3.03173
Н	-2.58244	-0.9159	-3.00958
0	-3.05295	0.49013	-0.84625
С	-4.44415	0.58668	-0.48195
С	-5.31483	0.27622	-1.68489
С	-4.64118	1.98591	0.05951
Н	-4.63691	-0.14253	0.31662
Н	-5.11503	-0.73136	-2.0633
Н	-6.37496	0.33444	-1.41532
Н	-5.11819	0.99285	-2.48944
Н	-4.01446	2.14265	0.94227
Н	-4.3707	2.72721	-0.70076
Н	-5.68748	2.14467	0.33896
0	-1.22495	-3.15978	1.51974
С	-0.49534	-4.38685	1.59659
С	-1.45165	-5.56757	1.60988
С	0.3316	-4.2892	2.86361
Н	0.17965	-4.44993	0.73205
Н	-2.07992	-5.58783	0.71432
Н	-0.8965	-6.51003	1.66081
Н	-2.10731	-5.5039	2.48494
Н	1.01207	-3.43359	2.8141
Н	-0.32232	-4.15908	3.73216
Н	0.92282	-5.19954	3.00408
Р	-0.16892	0.97746	0.70402
Pd	0.10228	-0.24944	-1.2997
С	1.37584	1.13421	1.72716
С	1.66683	2.42931	2.48905
С	1.49406	-0.0814	2.65666
Н	2.15858	1.03354	0.96394
С	3.06625	2.35705	3.10385
Н	0.93361	2.58635	3.29128
Н	1.60471	3.29546	1.82262
С	2.88287	-0.14624	3.2857
Н	0.73396	-0.01196	3.44571
Н	1.28282	-1.00296	2.10179
С	3.21469	1.14798	4.02361
Н	3.28004	3.28462	3.64925
Н	3.8047	2.28771	2.29192
Н	2.93973	-1.00194	3.97038
Н	3.62448	-0.32235	2.49494
Н	4.23155	1.10494	4.4322
Н	2.53486	1.26245	4.88102
С	-0.70142	2.62286	0.02119

С	-1.2173	3.67371	1.0076
С	0.38431	3.18672	-0.9059
Н	-1.55006	2.32324	-0.61152
С	-1.70385	4.91414	0.25779
Н	-0.42434	3.96596	1.70685
Н	-2.0348	3.25931	1.60629
С	-0.10733	4.44238	-1.62219
Н	1.29013	3.42276	-0.32978
Н	0.66665	2.42698	-1.64429
С	-0.61134	5.49188	-0.63681
Н	-2.0547	5.66567	0.97585
Н	-2.57063	4.64034	-0.36131
Н	0.69755	4.84941	-2.2456
Н	-0.92203	4.1626	-2.30513
Н	-0.98461	6.37227	-1.17378
Н	0.22537	5.83631	-0.01071
С	2.04314	-0.40241	-0.98047
С	2.46793	-1.51734	-0.25252
С	2.9793	0.52311	-1.42071
С	3.81093	-1.67961	0.06262
Н	1.74904	-2.26168	0.07933
С	4.32986	0.37582	-1.09204
Н	2.67657	1.35733	-2.04356
С	4.74851	-0.72387	-0.34221
Н	4.15665	-2.54058	0.62731
Н	5.03959	1.1154	-1.44667
S	0.55148	-0.63891	-3.57439
Ο	1.66941	0.11637	-4.13642
Ο	0.2576	-1.95083	-4.15657
F	-0.7813	0.2928	-4.0306
Ο	6.03147	-0.95546	0.04082
С	7.00571	-0.02662	-0.36568
Н	6.80244	0.97538	0.03711
Н	7.95486	-0.38793	0.03408
Н	7.07445	0.03564	-1.4599
Ts2			
С	-0.98909	-2.57617	-0.48002
С	-1.41257	-3.89914	-0.67345
С	-1.6708	-4.42178	-1.93113
Ċ	-1.54594	-3.59679	-3.04147
Ċ	-1.12603	-2.2848	-2.87246
С	-0.80396	-1.75375	-1.61213

С	-0.89977	-2.16473	0.95053
С	-2.10807	-1.99484	1.66419
С	-2.09572	-1.73291	3.03521
С	-0.87922	-1.65628	3.70798
С	0.31707	-1.86402	3.03941
С	0.29732	-2.14886	1.67145
Н	-1.55421	-4.51929	0.20759
Н	-1.98886	-5.45489	-2.03816
Н	-1.775	-3.9646	-4.03741
Н	-1.06379	-1.65588	-3.74804
Н	-3.02071	-1.58589	3.57987
Н	-0.87144	-1.44432	4.77327
Н	1.27037	-1.83807	3.55572
0	1.48817	-2.4464	1.06151
С	1.7684	-3.85917	0.81534
С	1.33421	-4.73153	1.97933
С	3.25713	-3.9597	0.55873
Н	1.21026	-4.13698	-0.08619
Н	0.25838	-4.67151	2.17205
Н	1.5795	-5.77322	1.74783
Н	1.86575	-4.45071	2.8952
Н	3.54254	-3.38307	-0.32189
Н	3.82086	-3.58161	1.41761
Н	3.52369	-5.00893	0.39278
0	-3.23567	-2.11937	0.9255
С	-4.5076	-2.25034	1.56108
С	-4.62899	-3.6056	2.23998
С	-5.52991	-2.07429	0.45551
Н	-4.62836	-1.43945	2.29287
Н	-3.8511	-3.75425	2.99437
Н	-5.60371	-3.70032	2.72969
Н	-4.53872	-4.40053	1.49169
Н	-5.43581	-1.08911	-0.00899
Н	-5.38009	-2.83631	-0.3166
Н	-6.54319	-2.17662	0.85619
Р	-0.29679	0.01797	-1.57259
Pd	1.10532	0.6929	0.15014
С	-1.89359	0.93715	-1.80695
С	-2.52094	0.84058	-3.20081
С	-2.92273	0.52748	-0.75346
Н	-1.6175	1.9827	-1.62279
С	-3.76165	1.73297	-3.28575
Н	-2.80824	-0.19992	-3.40315
Н	-1.81137	1.1396	-3.97741

С	-4.1461	1.43683	-0.82311
Н	-3.21882	-0.51304	-0.93064
Н	-2.48797	0.56838	0.24638
С	-4.78506	1.39183	-2.20685
Н	-4.20883	1.64533	-4.28367
Н	-3.45139	2.78199	-3.17092
Н	-4.87023	1.14505	-0.05204
Н	-3.83928	2.46465	-0.58375
Н	-5.64006	2.07669	-2.2648
Н	-5.17741	0.38019	-2.38981
С	0.79318	0.45737	-3.04419
С	0.63499	-0.1462	-4.44516
С	0.86517	1.99383	-3.08197
Н	1.77325	0.10651	-2.72032
С	1.74239	0.37602	-5.36521
Н	-0.34216	0.08547	-4.88672
Н	0.73081	-1.2335	-4.38875
С	1.96219	2.47569	-4.02713
Н	-0.09983	2.41258	-3.39911
Н	1.06821	2.37294	-2.07198
С	1.77773	1.89821	-5.42467
Н	1.60513	-0.04939	-6.36686
Н	2.70861	0.00684	-4.99432
Н	1.96413	3.57232	-4.05539
Н	2.93352	2.16214	-3.62386
Н	2.58454	2.23352	-6.08725
Н	0.8372	2.2725	-5.85659
С	-0.36068	1.84858	0.84989
С	-1.04905	1.43892	1.99367
С	-0.62518	3.11103	0.33056
С	-1.97971	2.2706	2.60096
Н	-0.85818	0.4625	2.42122
С	-1.55878	3.96122	0.93293
Н	-0.09707	3.46933	-0.54959
С	-2.24353	3.53772	2.07235
Н	-2.51723	1.95429	3.49049
Н	-1.73313	4.94305	0.50542
S	3.04794	-0.48677	-0.69396
0	4.13905	-0.66748	0.33639
0	2.99068	-1.58868	-1.65103
F	3.71993	0.73787	-1.60275
0	-3.17496	4.27519	2.73267
С	-3.47848	5.54694	2.21728
Н	-3.87576	5.48522	1.19455

Н	-4.24216	5.96729	2.87404
Н	-2.59973	6.20636	2.21843
В	3.9487	-0.09934	1.88238
0	3.52187	-1.22461	2.63693
Н	2.81399	-1.67028	2.14867
0	5.25866	0.36449	2.16892
Н	5.22773	0.95116	2.93144
С	2.88171	1.17069	1.89459
С	2.11294	1.33941	3.0706
С	3.00225	2.31501	1.05985
С	1.55788	2.56163	3.42407
Н	2.01029	0.48281	3.73077
С	2.43609	3.54605	1.4099
Н	3.62682	2.25724	0.17204
С	1.7277	3.67358	2.597
Н	0.98692	2.65583	4.34396
Н	2.56325	4.40365	0.75384
Н	1.28934	4.62883	2.87201

Int3

С	-0.86212	-2.42769	0.54293
С	-0.95402	-3.74102	1.02168
С	-2.12657	-4.21978	1.59064
С	-3.23839	-3.3869	1.68655
С	-3.1557	-2.07714	1.23002
С	-1.97393	-1.57744	0.6649
С	0.41227	-2.05555	-0.1453
С	1.6406	-2.10215	0.56653
С	2.85355	-2.18783	-0.12148
С	2.86061	-2.16316	-1.51
С	1.68104	-2.06217	-2.23802
С	0.46467	-2.02895	-1.56059
Н	-0.08633	-4.38959	0.9357
Н	-2.1743	-5.24294	1.95316
Н	-4.16394	-3.75286	2.12214
Н	-4.02289	-1.43237	1.31415
Н	3.79518	-2.21464	0.41179
Н	3.81307	-2.18547	-2.02967
Н	1.68499	-1.99646	-3.32009
0	-0.71581	-1.99787	-2.25186
С	-1.2472	-3.29232	-2.60517
С	-0.67317	-3.75908	-3.93108
С	-2.75341	-3.14435	-2.63492

Н	-0.97083	-4.00069	-1.81272
Н	0.41251	-3.87863	-3.8723
Н	-1.1051	-4.72602	-4.21161
Н	-0.90406	-3.03337	-4.71858
Н	-3.12626	-2.88443	-1.64124
Н	-3.0421	-2.355	-3.33819
Н	-3.22443	-4.08008	-2.95319
0	1.51393	-2.08651	1.90857
С	2.67658	-1.95455	2.73458
С	3.27853	-3.32365	3.00256
С	2.20143	-1.26563	3.9985
Н	3.39607	-1.30451	2.22254
Н	3.56297	-3.82486	2.07222
Н	4.17133	-3.23333	3.63001
Н	2.5507	-3.95553	3.52324
Н	1.78078	-0.2835	3.76248
Н	1.42656	-1.86374	4.48983
Н	3.03492	-1.13231	4.69544
Р	-1.75033	0.16678	0.16426
Pd	0.54673	0.50448	-0.30893
С	-2.1442	1.16488	1.67685
С	-3.56885	1.21386	2.23018
С	-1.15514	0.75736	2.77739
Н	-1.8705	2.18105	1.35238
С	-3.64555	2.18062	3.41349
Н	-3.86962	0.21605	2.57464
Н	-4.28012	1.51897	1.45513
С	-1.23905	1.70321	3.97213
Н	-1.3758	-0.27005	3.10001
Н	-0.1364	0.73794	2.36662
С	-2.66338	1.78991	4.51446
Н	-4.66978	2.20902	3.80609
Н	-3.41339	3.19646	3.06189
Н	-0.54796	1.3746	4.75875
Н	-0.91016	2.70497	3.65967
Н	-2.71513	2.50635	5.34357
Н	-2.95393	0.81123	4.92451
С	-2.98177	0.5557	-1.16804
С	-4.38329	-0.05428	-1.10085
С	-3.06025	2.07704	-1.35359
Н	-2.48002	0.1352	-2.0529
С	-5.17351	0.29792	-2.36191
Н	-4.92086	0.32685	-0.22205
Н	-4.32667	-1.14176	-0.99284

С	-3.85163	2.42643	-2.61096
Н	-3.55816	2.52588	-0.48205
Н	-2.05759	2.51316	-1.4038
С	-5.2461	1.80742	-2.58047
Н	-6.18167	-0.13118	-2.30206
Н	-4.68405	-0.17046	-3.22881
Н	-3.91574	3.51612	-2.71786
Н	-3.30556	2.05552	-3.49074
Н	-5.78832	2.03181	-3.50736
Н	-5.82294	2.2615	-1.76094
С	2.51913	0.92632	-0.44709
С	3.27387	1.06912	0.72645
С	3.21895	0.93386	-1.65256
С	4.66204	1.12906	0.70419
Н	2.76822	1.12559	1.68985
С	4.61533	1.00659	-1.70271
Н	2.67584	0.86745	-2.59327
С	5.34292	1.08832	-0.51639
Н	5.24325	1.22601	1.61779
Н	5.11565	1.00566	-2.66638
0	6.70406	1.14849	-0.44201
С	7.41269	1.15465	-1.65302
Н	7.14687	2.01978	-2.27628
Н	8.47047	1.21528	-1.3886
Н	7.23862	0.23635	-2.23219
С	0.46704	2.4922	-0.43046
С	0.42103	3.30727	0.70502
С	0.35516	3.10392	-1.68549
С	0.21958	4.6835	0.59433
Н	0.55178	2.87062	1.69228
С	0.15495	4.47913	-1.79757
Н	0.41909	2.50058	-2.58799
С	0.07674	5.27562	-0.65714
Н	0.18168	5.29442	1.49397
Н	0.06244	4.92955	-2.78366
Н	-0.07912	6.3476	-0.74447

Ts3

С	-0.84139	-2.31731	0.98688
С	-0.92827	-3.50632	1.7213
С	-2.05703	-3.81153	2.47088
С	-3.12865	-2.92336	2.49726
С	-3.05051	-1.73396	1.78236
С	-1.91551	-1.4082	1.02726
----	----------	----------	----------
С	0.3846	-2.12647	0.15467
С	1.65069	-1.98038	0.76959
С	2.82059	-2.07696	0.00913
С	2.73512	-2.27609	-1.3632
С	1.50471	-2.39391	-1.99937
С	0.33967	-2.33678	-1.23803
Н	-0.08943	-4.19686	1.69552
Н	-2.10037	-4.74141	3.03134
Н	-4.01945	-3.15226	3.07587
Н	-3.88674	-1.0443	1.81086
Н	3.79389	-1.95053	0.46643
Н	3.65052	-2.31499	-1.94516
Н	1.42748	-2.52222	-3.07355
0	-0.8836	-2.48212	-1.83624
С	-1.38757	-3.83236	-1.85869
С	-0.89255	-4.55202	-3.10058
С	-2.89681	-3.73704	-1.78864
Н	-1.01883	-4.34816	-0.96212
Н	0.20031	-4.60527	-3.11181
Н	-1.28329	-5.57513	-3.13228
Н	-1.22576	-4.02379	-4.00067
Н	-3.20349	-3.27861	-0.84479
Н	-3.27698	-3.12799	-2.61653
Н	-3.34753	-4.73251	-1.85772
0	1.60946	-1.76555	2.10221
С	2.81163	-1.47394	2.81871
С	3.50012	-2.76691	3.2225
С	2.38079	-0.6393	4.00835
Н	3.46585	-0.87049	2.17832
Н	3.74814	-3.37495	2.34699
Н	4.42643	-2.55574	3.76746
Н	2.84117	-3.35367	3.87177
Н	1.88564	0.27563	3.6689
Н	1.67606	-1.20017	4.63137
Н	3.24758	-0.36593	4.6189
Р	-1.71489	0.18595	0.14968
Pd	0.53406	0.53165	-0.38191
С	-2.15992	1.5216	1.36594
С	-3.60996	1.78693	1.77294
С	-1.27096	1.35536	2.60512
Н	-1.79602	2.41531	0.83285
С	-3.69149	3.02019	2.67445
Н	-4.0172	0.92422	2.31635

Н	-4.24048	1.93976	0.89108
С	-1.35933	2.58082	3.50995
Н	-1.58424	0.45963	3.16018
Н	-0.23468	1.17691	2.28675
С	-2.80393	2.87374	3.90733
Н	-4.7331	3.19831	2.97024
Н	-3.37114	3.90164	2.0998
Н	-0.73838	2.43453	4.403
Н	-0.94825	3.4487	2.97426
Н	-2.85615	3.77935	4.52442
Н	-3.18197	2.04727	4.52749
С	-2.94508	0.18901	-1.23914
С	-4.36202	-0.32206	-0.97444
С	-2.96345	1.57701	-1.89234
Н	-2.47175	-0.50729	-1.94724
С	-5.17176	-0.33825	-2.27089
Н	-4.87106	0.31866	-0.24312
Н	-4.32948	-1.32894	-0.54565
С	-3.78536	1.55741	-3.17925
Н	-3.40167	2.30851	-1.19796
Н	-1.93929	1.91415	-2.09122
С	-5.19961	1.03796	-2.93109
Н	-6.19187	-0.69008	-2.07157
Н	-4.71959	-1.06219	-2.96502
Н	-3.81656	2.5625	-3.61786
Н	-3.28447	0.90817	-3.91237
Н	-5.76421	0.99938	-3.87103
Н	-5.73166	1.7416	-2.27343
С	2.44672	1.23159	-0.6311
С	3.23305	1.36072	0.52644
С	3.10925	0.93428	-1.82544
С	4.60175	1.14205	0.50266
Н	2.76361	1.63345	1.4691
С	4.4874	0.71887	-1.87103
Н	2.54374	0.85847	-2.75109
С	5.23902	0.80941	-0.69875
Н	5.20692	1.23314	1.40089
Н	4.9579	0.4842	-2.82058
0	6.58257	0.60969	-0.62161
С	7.25601	0.28214	-1.81013
Н	7.16604	1.07902	-2.56089
Н	8.30687	0.15952	-1.54121
Н	6.88242	-0.65675	-2.24263
С	0.87352	2.50587	-0.7274

С	0.77486	3.40611	0.3474
С	0.60929	3.00076	-2.01651
С	0.38993	4.72874	0.14652
Н	1.00044	3.0682	1.35573
С	0.2231	4.32311	-2.21412
Н	0.70182	2.33954	-2.87458
С	0.10517	5.19735	-1.13465
Н	0.31396	5.39815	1.00102
Н	0.01367	4.67291	-3.22273
Н	-0.19155	6.23066	-1.29121

Ts4

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.07532
C -4.53088 -0.91262 2. C -4.24205 0.44138 2 C -3.26296 1.01924 2 C -2.55784 0.2714 1 C -2.26332 -1.92638 0. C -2.26332 -1.92638 0. C -2.26332 -1.92638 0. C -2.26332 -1.92638 0. C -1.15747 -2.75935 0. C -0.55646 -3.49822 -0. C -2.16379 -2.61977 -2. C -2.76233 -1.88844 -1. H -4.07578 -2.72418 1 H -4.77068 1.04863 3 H -3.04303 2.07383 2 H 0.28766 -4.14605 -0 H -0.58042 -3.98059 -2. H -0.58042 -3.98059 -2. H -2.55867 -2.53647 -3. O -3.80221 -1.04596 -1.	.90151
C -4.24205 0.44138 2 C -3.26296 1.01924 2 C -2.55784 0.2714 1 C -2.26332 -1.92638 $0.$ C -1.15747 -2.75935 $0.$ C -0.55646 -3.49822 $-0.$ C -0.55646 -3.49822 $-0.$ C -2.16379 -2.61977 $-2.$ C -2.76233 -1.88844 $-1.$ H -4.07578 -2.72418 1 H -4.07578 -2.72418 1 H -5.28052 -1.38049 3 H -3.04303 2.07383 2 H 0.28766 -4.14605 -0 H -0.58042 -3.98059 $-2.$ H -2.55867 -2.53647 $-3.$ O -3.80221 -1.04596 $-1.$ C -5.64064 -2.31549 $-2.$ C -5.97277 -0.36142 $-0.$ H -4.97921 -3.1528 $-2.$ H -6.64013 -2.71742 $-2.$ H -5.69963 -1.6525 $-3.$ H -5.5841 0.11126 -0 H -5.96904 0.37607 -1 H -7.00716 -0.67193 $-0.$ O -0.788 -2.81713 1	.85546
C -3.26296 1.01924 2 C -2.55784 0.2714 1 C -2.26332 -1.92638 0.56332 C -1.15747 -2.75935 0.5646 C -0.55646 -3.49822 -0.5646 C -0.55646 -3.49822 -0.5646 C -1.05926 -3.41016 -2.76233 C -2.16379 -2.61977 -2.56233 C -2.76233 -1.88844 -1.76842 H -4.07578 -2.72418 1 H -4.77068 1.04863 33 H -3.04303 2.07383 2 H 0.28766 -4.14605 -0 H -0.58042 -3.98059 -2.7253647 H -2.55867 -2.53647 -3.73666 O -3.80221 -1.04596 -1.7653466 C -5.64064 -2.31549 -2.72633 H -5.04751 -2.23189 -0.7742 H -6.64013 -2.71742 -2.71742 H -5.69963 -1.6525 -3.75841 H -5.5841 0.11126 -0 H -5.96904 0.37607 -1.790716 H -7.00716 -0.67193 -0.7788 O -0.788 -2.81713 1	2.98694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1851
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.23453
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.01404
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.29862
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73332
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.03068
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.31954
H -4.07578 -2.72418 1H -5.28052 -1.38049 3H -4.77068 1.04863 3H -3.04303 2.07383 2H 0.28766 -4.14605 -0 H -0.58042 -3.98059 $-2.$ H -2.55867 -2.53647 $-3.$ O -3.80221 -1.04596 $-1.$ C -5.11827 -1.55346 $-1.$ C -5.64064 -2.31549 $-2.$ H -5.04751 -2.23189 $-0.$ H -4.97921 -3.1528 $-2.$ H -6.64013 -2.71742 $-2.$ H -5.69963 -1.6525 $-3.$ H -5.5841 0.11126 $-0.$ H -5.96904 0.37607 $-1.$ H -7.00716 -0.67193 $-0.$ O -0.788 -2.81713 1	.29393
H-5.28052-1.380493H-4.770681.048633H-3.043032.073832H0.28766-4.14605-0H-0.58042-3.98059-2.H-2.55867-2.53647-3.O-3.80221-1.04596-1.C-5.11827-1.55346-1.C-5.64064-2.31549-2.C-5.97277-0.36142-0.H-4.97921-3.1528-2.H-6.64013-2.71742-2.H-5.69963-1.6525-3.H-5.58410.11126-0H-7.00716-0.67193-0.O-0.788-2.817131	.78632
H -4.77068 1.04863 3 H -3.04303 2.07383 2 H 0.28766 -4.14605 -0 H -0.58042 -3.98059 $-2.$ H -2.55867 -2.53647 $-3.$ O -3.80221 -1.04596 $-1.$ C -5.11827 -1.55346 $-1.$ C -5.64064 -2.31549 $-2.$ C -5.64064 -2.31549 $-2.$ C -5.97277 -0.36142 $-0.$ H -5.04751 -2.23189 $-0.$ H -5.04751 -2.23189 $-0.$ H -5.69963 -1.6525 $-3.$ H -5.69963 -1.6525 $-3.$ H -5.5841 0.11126 -0 H -7.00716 -0.67193 $-0.$ O -0.788 -2.81713 1	.4876
H -3.04303 2.07383 2 H 0.28766 -4.14605 -0 H -0.58042 -3.98059 $-2.$ H -2.55867 -2.53647 $-3.$ O -3.80221 -1.04596 $-1.$ C -5.11827 -1.55346 $-1.$ C -5.64064 -2.31549 $-2.$ C -5.64064 -2.31549 $-2.$ H -5.04751 -2.23189 $-0.$ H -4.97921 -3.1528 $-2.$ H -6.64013 -2.71742 $-2.$ H -5.69963 -1.6525 $-3.$ H -5.5841 0.11126 $-0.$ H -5.96904 0.37607 $-1.$ H -7.00716 -0.67193 $-0.$ O -0.788 -2.81713 $1.$	3.71674
H 0.28766 -4.14605 -0 H -0.58042 -3.98059 $-2.$ H -2.55867 -2.53647 $-3.$ O -3.80221 -1.04596 $-1.$ C -5.11827 -1.55346 $-1.$ C -5.64064 -2.31549 $-2.$ C -5.64064 -2.31549 $-2.$ C -5.64751 -2.23189 $-0.$ H -5.04751 -2.23189 $-0.$ H -4.97921 -3.1528 $-2.$ H -6.64013 -2.71742 $-2.$ H -5.69963 -1.6525 $-3.$ H -5.5841 0.11126 -0 H -7.00716 -0.67193 $-0.$ O -0.788 -2.81713 1	2.30466
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.52751
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.82143
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.32638
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.58286
C -5.64064 -2.31549 -2. C -5.97277 -0.36142 -0. H -5.04751 -2.23189 -0. H -4.97921 -3.1528 -2. H -6.64013 -2.71742 -2. H -5.69963 -1.6525 -3. H -5.5841 0.11126 -0 H -5.96904 0.37607 -1 H -7.00716 -0.67193 -0. O -0.788 -2.81713 1	.30204
C-5.97277-0.36142-0.H-5.04751-2.23189-0.H-4.97921-3.1528-2.H-6.64013-2.71742-2.H-5.69963-1.6525-3.H-5.58410.11126-0H-5.969040.37607-1H-7.00716-0.67193-0.O-0.788-2.817131	50733
H-5.04751-2.23189-0.H-4.97921-3.1528-2.H-6.64013-2.71742-2.H-5.69963-1.6525-3.H-5.58410.11126-0H-5.969040.37607-1H-7.00716-0.67193-0.O-0.788-2.817131	.92675
H-4.97921-3.1528-2.H-6.64013-2.71742-2.H-5.69963-1.6525-3.H-5.58410.11126-0H-5.969040.37607-1H-7.00716-0.67193-0.O-0.788-2.817131	.4422
H-6.64013-2.71742-2.H-5.69963-1.6525-3.H-5.58410.11126-0H-5.969040.37607-1H-7.00716-0.67193-0.O-0.788-2.817131	.75262
H-5.69963-1.6525-3.H-5.58410.11126-0H-5.969040.37607-1H-7.00716-0.67193-0.O-0.788-2.817131	.30743
H-5.58410.11126-0H-5.969040.37607-1H-7.00716-0.67193-0.O-0.788-2.817131	.37755
H -5.96904 0.37607 -1 H -7.00716 -0.67193 -0. O -0.788 -2.81713 1	.01994
H -7.00716 -0.67193 -0. O -0.788 -2.81713 1	.73691
O -0.788 -2.81713 1	.74554
	.59731

С	0.53171	-3.2613	1.93437
С	0.49882	-4.74168	2.27427
С	0.98857	-2.39479	3.09043
Н	1.19245	-3.07599	1.07635
Н	0.11957	-5.33756	1.43812
Н	1.50239	-5.10063	2.52686
Н	-0.15623	-4.91093	3.13569
Н	1.04402	-1.35027	2.77265
Н	0.28705	-2.47695	3.9274
Н	1.98039	-2.70969	3.43227
Р	-1.17551	0.97764	0.24442
Pd	0.29911	-0.61431	-0.34437
С	-0.39636	2.34164	1.2463
С	-1.04227	3.72569	1.36591
С	0.0088	1.79908	2.62207
Н	0.53627	2.47593	0.67726
С	-0.08934	4.68843	2.07803
Н	-1.98278	3.67591	1.93044
Н	-1.2907	4.12364	0.37729
С	0.9475	2.7691	3.33318
Н	-0.88772	1.6374	3.23538
Н	0.49571	0.82683	2.49829
С	0.32815	4.15945	3.44725
Н	-0.55925	5.67564	2.17295
Н	0.80665	4.82403	1.45474
Н	1.20101	2.38097	4.32779
Н	1.88822	2.82607	2.7677
Н	1.02834	4.85555	3.92592
Н	-0.5579	4.10758	4.09786
С	-2.01596	1.71086	-1.24046
С	-3.30433	2.49928	-1.00479
С	-1.01366	2.48807	-2.09975
Н	-2.2973	0.80994	-1.80289
С	-3.92861	2.88862	-2.34449
Н	-3.10237	3.40685	-0.42187
Н	-4.00922	1.89671	-0.42305
С	-1.65238	2.89491	-3.42631
Н	-0.68229	3.3911	-1.56779
Н	-0.11764	1.87909	-2.26651
С	-2.94665	3.67597	-3.20949
Н	-4.84564	3.46873	-2.17916
Н	-4.22334	1.97089	-2.87437
Н	-0.9426	3.48597	-4.0186
Н	-1.87073	1.98768	-4.00868

Н	-3.40544	3.93096	-4.17316
Н	-2.71291	4.62865	-2.71074
С	4.4497	0.20272	-0.57551
С	4.98846	0.5394	-1.8181
С	5.26529	-0.26214	0.44754
С	6.34898	0.40995	-2.0283
Н	4.34	0.91533	-2.60216
С	6.63474	-0.39351	0.24018
Н	4.83086	-0.50388	1.41175
С	7.18062	-0.0586	-1.00241
Н	6.79971	0.67099	-2.9803
Н	7.26164	-0.74908	1.04978
S	2.69617	0.36002	-0.30027
0	2.5789	0.44731	1.15727
0	2.28102	1.36748	-1.27726
F	2.47746	-1.26074	-0.85867
0	8.49311	-0.14525	-1.30809
С	9.3745	-0.60423	-0.3087
Н	9.12795	-1.62639	0.00636
Н	10.36853	-0.59585	-0.75791
Н	9.36733	0.05645	0.56786

Int4

С	-2.26893	-1.71894	0.47082
С	-3.17273	-2.69162	0.90902
С	-4.42497	-2.33761	1.39676
С	-4.79625	-0.99655	1.44432
С	-3.89967	-0.0192	1.02766
С	-2.63	-0.36499	0.55054
С	-0.99551	-2.18546	-0.15533
С	-0.04511	-2.93426	0.59148
С	0.94615	-3.66237	-0.07625
С	1.031	-3.62054	-1.45595
С	0.12242	-2.8876	-2.21874
С	-0.90742	-2.21738	-1.57677
Н	-2.88016	-3.73694	0.86122
Н	-5.11131	-3.10836	1.7359
Н	-5.77582	-0.71031	1.81634
Н	-4.18779	1.02471	1.08212
Н	1.68137	-4.21677	0.49284
Н	1.8328	-4.15897	-1.95241
Н	0.19456	-2.84084	-3.29942
0	-1.87999	-1.58396	-2.29718

С	-3.00431	-2.42394	-2.64921
С	-2.76238	-3.07004	-4.00083
С	-4.23927	-1.54918	-2.62321
Н	-3.09764	-3.20057	-1.8787
Н	-1.87831	-3.71382	-3.97739
Н	-3.62194	-3.68536	-4.28815
Н	-2.61437	-2.29995	-4.76557
Н	-4.40934	-1.15595	-1.61747
Н	-4.12491	-0.70996	-3.31776
Н	-5.11858	-2.12733	-2.92557
0	-0.16102	-2.88717	1.92769
С	1.06052	-2.93885	2.71214
С	1.18646	-4.31905	3.32754
С	0.95485	-1.83243	3.74153
Н	1.88758	-2.70106	2.0357
Н	1.21625	-5.1021	2.56259
Н	2.10313	-4.38724	3.92296
Н	0.33309	-4.51983	3.98489
Н	1.00168	-0.85278	3.25729
Н	0.02094	-1.91874	4.3078
Н	1.79392	-1.8955	4.44317
Р	-1.372	0.88546	0.11529
Pd	0.5776	-0.29141	0.13854
С	-1.40436	2.18109	1.43069
С	-2.49132	3.25922	1.43368
С	-1.29417	1.49313	2.79804
Н	-0.45365	2.6968	1.23624
С	-2.18898	4.28134	2.53221
Н	-3.48296	2.82384	1.61464
Н	-2.5337	3.77049	0.46671
С	-1.00371	2.51987	3.88748
Н	-2.23129	0.96459	3.02175
Н	-0.49865	0.74072	2.77499
С	-2.06039	3.62124	3.90226
Н	-2.97245	5.04941	2.54657
Н	-1.24729	4.79197	2.28642
Н	-0.95688	2.02022	4.86275
Н	-0.01069	2.95166	3.70509
Н	-1.81921	4.3747	4.66204
Н	-3.03143	3.18764	4.18585
С	-1.82624	1.56707	-1.53958
С	-3.29112	1.97082	-1.72956
С	-0.86646	2.68848	-1.95042
Н	-1.64166	0.70292	-2.19368

С	-3.53338	2.38661	-3.18059
Н	-3.5471	2.81009	-1.0719
Н	-3.95172	1.14021	-1.4606
С	-1.13242	3.11055	-3.39367
Н	-0.99167	3.55406	-1.28595
Н	0.17014	2.36198	-1.82405
С	-2.59054	3.51041	-3.60285
Н	-4.57963	2.68977	-3.31149
Н	-3.37163	1.51661	-3.83418
Н	-0.46496	3.93688	-3.6665
Н	-0.88719	2.27235	-4.06239
Н	-2.76698	3.78132	-4.65104
Н	-2.80906	4.40759	-3.00488
С	3.45315	1.1757	-0.03753
С	3.69835	1.80977	-1.25404
С	4.39192	0.3283	0.53527
С	4.90674	1.60175	-1.89546
Н	2.95199	2.47669	-1.67297
С	5.6107	0.12672	-0.1017
Н	4.16235	-0.16447	1.47109
С	5.86739	0.75886	-1.3226
Н	5.13976	2.08798	-2.83737
Н	6.3442	-0.52886	0.35372
S	1.89889	1.44555	0.7806
0	2.11448	1.28337	2.23559
0	1.43293	2.77038	0.29864
F	2.25593	-1.35793	0.33057
0	7.0172	0.62343	-2.02394
С	8.01644	-0.21257	-1.49082
Н	7.66471	-1.24766	-1.38989
Н	8.84538	-0.18134	-2.19988
Н	8.36333	0.14629	-0.51287

Ts5

С	-1.28364	-1.36777	1.75412
С	-1.52619	-2.03608	2.95664
С	-2.37377	-1.50879	3.92338
С	-3.00133	-0.2892	3.69454
С	-2.73888	0.40663	2.51998
С	-1.87453	-0.10324	1.54355
С	-0.48969	-2.05114	0.70431
С	0.90005	-2.25996	0.82492
С	1.60434	-2.80299	-0.2579

С	0.93049	-3.18008	-1.41401
С	-0.45286	-3.08081	-1.50458
С	-1.15121	-2.53999	-0.42951
Н	-1.03973	-2.99339	3.11959
Н	-2.54843	-2.05248	4.84763
Н	-3.67887	0.13142	4.43212
Н	-3.21107	1.36937	2.36663
Н	2.67959	-2.91831	-0.20675
Н	1.49641	-3.58538	-2.24824
Н	-0.99607	-3.41124	-2.38329
0	-2.52194	-2.45918	-0.47516
С	-3.20531	-3.51693	0.22456
С	-3.34547	-4.7272	-0.68091
С	-4.53541	-2.95723	0.68237
Н	-2.60546	-3.7835	1.10456
Н	-2.36327	-5.08884	-1.00079
Н	-3.85562	-5.5428	-0.15682
Н	-3.9283	-4.46757	-1.57178
Н	-4.38197	-2.11392	1.36252
Н	-5.12219	-2.61619	-0.17826
Н	-5.11169	-3.72759	1.20531
0	1.44757	-1.93942	2.00533
С	2.86828	-1.75882	2.10493
С	3.53458	-3.08516	2.43558
С	3.08655	-0.71556	3.1807
Н	3.23227	-1.36188	1.15017
Н	3.33002	-3.85054	1.68073
Н	4.62004	-2.95523	2.50559
Н	3.16929	-3.45528	3.40002
Н	2.57309	0.19994	2.88417
Н	2.68884	-1.06622	4.13981
Н	4.15792	-0.51862	3.29819
Р	-1.42651	0.95498	0.11425
Pd	0.80023	0.66371	-0.61984
С	-1.42905	2.73754	0.69008
С	-2.75052	3.51303	0.76949
С	-0.60188	2.93757	1.96555
Н	-0.85711	3.193	-0.13654
С	-2.46267	5.00001	0.9905
Н	-3.36418	3.14986	1.60397
Н	-3.34734	3.38954	-0.1406
С	-0.3267	4.42195	2.19041
Н	-1.16084	2.53752	2.82239
Н	0.32332	2.35772	1.89966

С	-1.61877	5.23146	2.24132
Н	-3.40819	5.55275	1.05484
Н	-1.92811	5.39217	0.11284
Н	0.24453	4.55525	3.11721
Н	0.30788	4.79894	1.37432
Н	-1.40278	6.30058	2.35864
Н	-2.19838	4.9289	3.12619
С	-2.77046	0.94223	-1.17579
С	-2.51224	0.03002	-2.37745
С	-4.1596	0.66928	-0.59148
Н	-2.74017	1.97898	-1.54932
С	-3.58686	0.23422	-3.44261
Н	-2.52406	-1.01292	-2.05281
Н	-1.52221	0.21841	-2.80362
С	-5.24518	0.83894	-1.65334
Н	-4.17071	-0.35682	-0.20904
Н	-4.36484	1.3266	0.26027
С	-4.97655	-0.03744	-2.8729
Н	-3.38682	-0.423	-4.29737
Н	-3.54168	1.26655	-3.82075
Н	-6.22488	0.60406	-1.2187
Н	-5.28526	1.8933	-1.96564
Н	-5.74565	0.1263	-3.63761
Н	-5.04056	-1.09505	-2.57781
С	2.84683	0.56139	-1.00676
С	3.48446	-0.49387	-1.65864
С	3.59326	1.43169	-0.21722
С	4.84462	-0.71048	-1.47805
Н	2.92246	-1.16382	-2.30184
С	4.95744	1.22308	-0.02876
Н	3.10644	2.24306	0.31403
С	5.58631	0.14157	-0.65461
Н	5.3562	-1.53264	-1.96979
Н	5.51221	1.89774	0.61438
S	0.99091	0.97802	-2.75248
0	1.02157	2.34658	-3.2506
0	1.15935	-0.11069	-3.70407
F	1.25127	0.71789	1.3007
0	6.90216	-0.15609	-0.52833
C	7.68431	0.67353	0.297
H	7.32375	0.66629	1.33437
H	8.69543	0.26438	0.26498
Н	7.70134	1.70835	-0.06956

Int5

С	2.40002	0.35066	1.10038
С	3.48225	0.61911	1.94329
С	3.70347	-0.13396	3.0902
С	2.84306	-1.18214	3.40387
С	1.75081	-1.44555	2.58444
С	1.50383	-0.67845	1.43951
С	2.30181	1.10882	-0.17927
С	1.99978	2.48993	-0.20748
С	2.10389	3.19852	-1.41555
С	2.49661	2.54865	-2.57034
С	2.81721	1.19013	-2.56479
С	2.74653	0.48712	-1.37327
Н	4.15615	1.43049	1.68284
Н	4.54943	0.09243	3.73309
Н	3.01377	-1.78802	4.28929
Н	1.08103	-2.25772	2.84397
Н	1.83577	4.24579	-1.45118
Н	2.54261	3.10657	-3.50072
Н	3.11774	0.6728	-3.4693
0	3.10137	-0.83452	-1.32387
С	4.48757	-1.06996	-0.99616
С	5.31618	-1.12481	-2.26668
С	4.54582	-2.35296	-0.19457
Н	4.83153	-0.23791	-0.36742
Н	5.25955	-0.17815	-2.81214
Н	6.36807	-1.31829	-2.0295
Н	4.95344	-1.92662	-2.9191
Н	3.983	-2.24783	0.73714
Н	4.12309	-3.18233	-0.77233
Н	5.5839	-2.60015	0.05116
0	1.64856	3.05481	0.96505
С	0.70803	4.15705	0.93338
С	1.46249	5.46408	1.09102
С	-0.25941	3.90269	2.07118
Н	0.16119	4.09131	-0.01533
Н	2.18656	5.61527	0.28424
Н	0.76416	6.30792	1.08357
Н	2.00785	5.47537	2.04168
Н	-0.78579	2.95822	1.90457
Н	0.26961	3.84748	3.02933
Н	-1.0012	4.70651	2.12415
Р	0.00429	-0.8937	0.40845

Pd	-0.30022	1.08505	-0.67162
С	-1.40167	-1.26453	1.56113
С	-1.59473	-2.66365	2.15394
С	-1.44247	-0.19939	2.66428
Н	-2.26151	-1.07361	0.9018
С	-2.92041	-2.72378	2.91632
Н	-0.77949	-2.91299	2.84547
Н	-1.5912	-3.42671	1.37019
С	-2.76379	-0.26347	3.4252
Н	-0.60839	-0.35878	3.36048
Н	-1.28845	0.79478	2.22796
С	-2.99521	-1.65662	4.00455
Н	-3.05338	-3.72322	3.34876
Н	-3.74519	-2.57542	2.20436
Н	-2.77437	0.49052	4.2218
Н	-3.58456	-0.01454	2.73745
Н	-3.9646	-1.70337	4.51556
Н	-2.2279	-1.86267	4.76562
С	0.31132	-2.35493	-0.68668
С	0.99104	-3.56062	-0.0334
С	-0.96557	-2.76225	-1.42976
Н	1.01885	-1.94802	-1.42275
С	1.2934	-4.62473	-1.08842
Н	0.34454	-3.99291	0.74068
Н	1.91532	-3.24826	0.46121
С	-0.65695	-3.83588	-2.47133
Н	-1.70519	-3.1535	-0.71803
Н	-1.42828	-1.89196	-1.90385
С	0.03258	-5.04294	-1.84142
Н	1.76678	-5.49503	-0.61685
Н	2.02227	-4.21623	-1.80405
Н	-1.5819	-4.14066	-2.97581
Н	-0.00267	-3.4058	-3.2436
Н	0.27661	-5.78775	-2.60884
Н	-0.66181	-5.52968	-1.14043
С	-2.21627	0.76218	-0.96711
С	-2.64352	0.28577	-2.21029
С	-3.17749	1.12626	-0.03133
С	-3.9956	0.12527	-2.48433
Н	-1.91681	0.05092	-2.98311
С	-4.54245	0.97224	-0.29537
Н	-2.88155	1.55365	0.92201
С	-4.95463	0.45803	-1.52393
Н	-4.33342	-0.24817	-3.44683

Н	-5.26265	1.26951	0.46008
F	-0.61578	2.86671	-1.49302
0	-6.25225	0.25436	-1.88214
С	-7.2402	0.61433	-0.95159
Н	-7.20335	1.68648	-0.7141
Н	-8.19904	0.38364	-1.41981
Н	-7.14785	0.04092	-0.01836
TS6			
С	-0.08592	-2.14964	1.80576
С	-0.34425	-3.22832	2.66606
С	-0.05942	-4.53844	2.31557
С	0.49845	-4.80046	1.06955
С	0.74776	-3.74796	0.19978
С	0.47038	-2.41228	0.5392
С	-0.39225	-0.81276	2.37204
С	-1.70449	-0.49644	2.77578
С	-1.95076	0.66495	3.51319
С	-0.90366	1.54353	3.78483
С	0.38691	1.28014	3.34799
С	0.63428	0.09047	2.66108
Н	-0.77673	-3.01035	3.63805
Н	-0.26862	-5.34636	3.01105
Н	0.73402	-5.81711	0.76789
Н	1.15997	-3.97589	-0.77335
Н	-2.95038	0.90754	3.85339
Н	-1.10941	2.45457	4.34016
Н	1.20901	1.96805	3.51055
0	1.88678	-0.18186	2.19547
С	2.75334	-0.98844	3.01777
С	3.29451	-0.17789	4.1815
С	3.83481	-1.47592	2.07549
Н	2.16689	-1.84017	3.39041
Н	2.48416	0.16247	4.83429
Н	3.97747	-0.79019	4.78067
Н	3.83195	0.70033	3.8101
Н	3.40416	-2.13576	1.3167
Н	4.28919	-0.62114	1.56521
Н	4.60653	-2.0251	2.62405
0	-2.65808	-1.36826	2.37384
С	-4.03765	-1.05548	2.56883
С	-4.48319	-1.51141	3.94832
С	-4.78192	-1.7497	1.446

Н	-4.17224	0.02847	2.45965
Н	-3.88852	-1.03971	4.73687
Н	-5.5365	-1.26239	4.11549
Н	-4.36574	-2.59693	4.03608
Н	-4.45943	-1.35178	0.48001
Н	-4.58161	-2.8262	1.46728
Н	-5.86041	-1.59146	1.54802
Р	0.67133	-1.18162	-0.81392
Pd	0.8464	1.08172	-0.46235
С	-0.67276	-1.71184	-1.98807
С	-0.43972	-2.99016	-2.79927
С	-2.02452	-1.79856	-1.26799
Н	-0.7217	-0.87556	-2.69736
С	-1.55577	-3.15954	-3.83138
Н	-0.44937	-3.8597	-2.13088
Н	0.53368	-2.97371	-3.29961
С	-3.15306	-1.98412	-2.28028
Н	-2.0052	-2.6486	-0.57261
Н	-2.20187	-0.90287	-0.66659
С	-2.92557	-3.20998	-3.16017
Н	-1.3824	-4.0695	-4.41942
Н	-1.52391	-2.31663	-4.53736
Н	-4.11311	-2.06601	-1.75543
Н	-3.21463	-1.08267	-2.90528
Н	-3.71709	-3.29447	-3.91534
Н	-2.98484	-4.11607	-2.53925
С	2.33348	-1.39147	-1.61925
С	3.05376	-2.73368	-1.74637
С	2.29308	-0.65705	-2.96993
Н	2.92501	-0.74384	-0.9514
С	4.46948	-2.50265	-2.28218
Н	2.51816	-3.41416	-2.42408
Н	3.12248	-3.22951	-0.77299
С	3.71042	-0.43111	-3.48699
Н	1.71989	-1.23728	-3.70734
Н	1.78518	0.30993	-2.85388
С	4.46478	-1.751	-3.60977
Н	4.98401	-3.46607	-2.38732
Н	5.03264	-1.9205	-1.53938
Н	3.6791	0.08479	-4.45503
Н	4.22979	0.23181	-2.78188
Н	5.4931	-1.57582	-3.94903
Н	3.98162	-2.37423	-4.37754
В	2.86836	3.3163	1.01079

0	2 00822	2 20570	1 06767
0	3.09823	2.30370	1.90/0/
H	2.79401	1.5268	1.60252
0	3.7746	4.33955	0.89897
Н	3.46762	5.00052	0.2679
С	1.53124	3.47243	0.14388
С	0.37251	3.98305	0.76999
С	1.54614	3.46065	-1.27251
С	-0.6835	4.50067	0.03177
Н	0.31937	3.98599	1.85599
С	0.48323	3.99124	-2.01291
Н	2.43188	3.08852	-1.78276
С	-0.62201	4.52177	-1.36241
Н	-1.56421	4.88376	0.5392
Н	0.5235	3.97662	-3.09889
Н	-1.45303	4.92109	-1.93627
F	2.8996	0.97996	-0.16692
С	-1.0737	1.33383	-0.85937
С	-1.97916	1.5718	0.17956
С	-1.54721	1.43754	-2.16611
С	-3.31026	1.87687	-0.07597
Н	-1.64102	1.53033	1.20766
С	-2.88165	1.7502	-2.44416
Н	-0.87033	1.28968	-3.0057
С	-3.77422	1.95774	-1.39202
Н	-4.0106	2.06308	0.73448
Н	-3.20564	1.82524	-3.47733
0	-5.09633	2.24655	-1.54351
С	-5.59548	2.30717	-2.85482
Н	-5.46739	1.35126	-3.38185
Н	-6.66081	2.52847	-2.76633
Н	-5.1105	3.10175	-3.43892