Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Improvement of photostability of cycloalkylamine-7-sulfonyl-2,1,3benzoxadiazole-based fluorescent dyes by replacing dimethylamino substituent with cyclic amino rings

Pramod Kumar Mehta, Ki Ryu, Chan Kyung Kim* and Keun-Hyeung Lee*

Research Center for Controlling Intercellular Communication and Education and Research

Center for Smart Energy Materials and Process, Department of Chemistry and Chemical

Engineering, Inha University, Incheon 402-751, South Korea

*E-mail: leekh@inha.ac.kr, kckyung@inha.ac.kr

Figure S1. HPLC chromatogram of 1

+MS, 0.1-0.4min #3-24

Figure S2. HRMS (ESI-TOF) spectrum of 1

Figure S3.¹H-NMR spectrum of 1 in DMSO-D6

Figure S4.¹³C-NMR spectrum of 1 in DMSO-D6

Figure S5. HPLC chromatogram of **2**

Figure S6a. ESI-MS spectrum of 2

Figure S6b. Aziridinyl ring opening and HRMS (ESI-TOF) spectrum of 2'

Figure S7.¹H-NMR spectrum of 2 in CDCl3

Figure S8.¹³C-NMR spectrum of 2 in DMSO-D6

Figure S9. HPLC chromatogram of 3

Figure S10. HRMS (ESI-TOF) spectrum of 3

Figure S11a.¹H-NMR spectrum of 3 in DMSO-D6

Figure S11b.¹H-NMR spectrum of 3 in CDCl3

Figure S12.¹³C-NMR spectrum of 3 in DMSO-D6

Figure S13. HPLC chromatogram of 4

+MS, 0.2-0.6min #12-32

Figure S14. HRMS (ESI-TOF) spectrum of 4

Figure S15.¹H-NMR spectrum of 4 in DMSO-D6

Figure S16.¹³C-NMR spectrum of 4 in DMSO-D6

Figure S17. HPLC chromatogram of 5

+MS, 0.2-0.4min #9-25

Figure S18. HRMS (ESI-TOF) spectrum of 5

Figure S19.¹H-NMR spectrum of 5 in DMSO-D6

Figure S20.¹³C-NMR spectrum of 5 in DMSO-D6

Figure S21. Normalized fluorescence emission spectra of 1-5 [20 μ M] in various solvents. (a; 1, b; 2, c; 3, d; 4, and e; 5).

Figure S22. Normalized UV-visible emission spectra of probes 1-5 [20 μ M] in different solvent system. (a; 1, b; 2, c; 3, d; 4, and e; 5).

Figure S23. Linear plot of absorption band as a function of concentration of **1-5** in aqueous buffered solution (10 mM HEPES at pH 7.4) containing 0.5% DMF (a; 1, b; 2, c; 3, d; 4, and e; **5**).

Figure S24. Fluorescence emission spectra of **1-5** [20 μ M] in aqueous buffered solution (10 mM HEPES, pH 7.4) containing 0.5% DMF (Sensitivity high, slit=10/10).

Figure S25. Lippert-Mataga plot of **1-5** in different solvents (a; toluene, b; THF, c; DCM, d; DMF, e; ACN, f; methanol; and g; aqueous buffered solution [10 mM HEPES, pH 7.4 containing 0.5% DMF]) showing the variation of Stokes shift as a function of orientation polarizability of the solvents

Figure S26. Optimized structures of (a) **1**, (b) **2**, (c) **3**, (d) **4**, and (e) **5** in the ground and excited states. Two torsional angles (in °), D_1 and D_2 , are shown in each figure. moments (in D) are shown in the rectangular box and some important bond lengths (in Å) of the probes are also shown. The values in parentheses are for the excited states. Dipole

Figure S27. Optimized TICT structures for (a) **1**, (b) **2**, (c) **3**, (d) **4**, and (e) **5** in the excited states. Two torsional angles (in °) and some important bond lengths (in Å) are shown in each figure. ΔE denotes energy difference between LE and TICT states.

Table	Solvent	Probe	$\lambda_{Ex}(nm)$	$\lambda_{Em}(nm)$	Δλ (nm)	Δv (cm ⁻¹)
	Aqueous	1	452	574	122	4702
Stokes	buffered	2	453	575.5	122.5	4699
	solution	3	459	587	128	4751
	(pH=7.4)	4	459.5	579	119.5	4507
		5	458.5	589.5	131	4847
	DMF	1	449	557	108	4318
		2	449	557	108	4318
		3	454	560.5	106.5	4185
		4	455.5	556	100.5	3968
		5	451.5	562	110.5	4379
	МеОН	1	441	557.5	116.5	4739
		2	442	558.5	116.5	4719
		3	444.5	563	118.5	4735
		4	448.5	558.5	110	4391
		5	446	563	117	4660
	ACN	1	444.5	557	112.5	4544
		2	444.5	557.5	113	4509
		3	450.5	561	110.5	4372
		4	452	557	105	4170
		5	449.5	563	113.5	4485
	THF	1	439.5	547.5	108	4488
		2	441.5	548.5	107	4419
		3	444	551.5	107.5	4390
		4	447.5	546	98.5	4031
		5	443	553	110	4490
	DCM	1	445	548	103	4224
		2	448.5	549	100.5	4082
		3	449	552.5	103.5	4172
		4	451.5	548.5	97	3917

S1: Absorption maxima, emission maxima and shift of **1-5** in various solvents.

	5	451	555.5	104.5	4171
Toluene	1	443	539	96	4020
	2	445.5	540	94.5	3928
	3	446.5	541	94.5	3912
	4	449	543	94	3856
	5	448	542.5	94.5	3888

Probe	φ (Methanol)	φ (DMF)	ф (DCM)
1	0.049	0.246	0.688
2	0.032	0.282	0.775
3	0.021	0.161	0.309
4	0.044	0.375	0.697
5	0.036	0.231	0.667

Table S2. Quantum yields in methanol, DMF, and DCM.