Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Porous Single-Crystalline Vanadium Nitride Octahedron with Unique

Electrocatalytic Performance

Xiaoyan yu,^{a,b} Fangyuan Cheng,^{b,c} and Kui Xie,*^{b,c,d}

^aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China

^bKey Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research

on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

^cFujian Science & Technology Innovation Laboratory for Optoelectronic Information of China,

Fuzhou, Fujian 350108, China.

^dAdvanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou, Guangdong 116023, China.

*Correspondence: kxie@fjirsm.ac.cn

Figure S1. (a) SEM image; (b) TEM image; (c) SAED pattern and (d) Cs-corrected HRTEM image of PPC-VN.

Figure S2. (a, b) The surface specific area and BJH average pore size of PSC-VN and PPC-VN. N2 adsorption-
desorption isotherms and (inset) the corresponding pore diameter distribution of porous single crystal micron
particles,(c)PSC-VN(d)PPC-VN.

49.5K	v				Experimental values from EDS			Calculated values formula			
44.0K 38.5K 33.0K						V(Wt%)	N(wt%)	Mole Ratio of	V(Wt%)	N(Wt%)	Mole Ratio of V/N
								V/N			
27.5K					1	78.22	21.78	0.99	78.5	21.5	≈1:1
22.0K					2	78.78	21.22	0.99			
16.5K					3	78.28	21.72	0.99			
11.0K		N			4	80.06	19.94	1.10			
	N			v	5	80.13	19.87	1.11			
5.5K	v				Average	79.09	20.91	1.04			
0.0K	_										
0.	.0	1.7	3.4	5.1	6.8	8.5	10.2		11.9	13.6	15.3

Figure S3. The element analysis of PSC-VN. No oxygen residual is observed from EDS elemental analysis. The mole ratio between V and N is approximately at 1.

Figure S4. ICP and CA results. Mole ratio between metal and nitrogen in PSC-VN and PPC-VN.

Figure S5. EDS mapping images of VN.

Figure S6. Pt/C (20 wt%), PSC-VN and PPC-VN catalysts toward HER. (a) LSV curves in 0.5 mol·L⁻¹ H_2SO_4 solution with a scan rate of 10 mV/s; (b) Tafel plots and (c) the EIS Nyquist plots; (d) Long-standing tolerance test of the Pt/C (20%) at -0.05 V _{VS.}RHE, PSC-VN at -0.1 V _{VS.} RHE and PPC-VN catalysts at -0.2 V _{VS.} RHE for 20 h in 0.5 mol·L⁻¹ H_2SO_4 solution.

Figure S7. Crystal structure after stability test. (a, b) SEM image of the catalyst after the stability test; (c) The XRD of the catalysts after the stability test.

Figure S8. CVs of (a) PSC-VN and (b) PPC-VN octahedron catalysts at 20-100 mV/s in 1.0 mol·L⁻¹ KOH solution; (c-d) Plots providing the C_{dl} value of PSC-VN and PPC-VN catalysts, respectively.

Table S1. The summary of the performance of difference catalysts for HER

Catalyst	η(mV)at	Tafel slope	Electrolyte	References	
	j=10mA∙cm⁻²	(mV∙dec⁻¹)			
VN PSC	74.67	68.30	1М КОН	This work	
VN PPC	150.66	178.52	1М КОН	This work	
Ni₃N@VN-NF	56	47	1М КОН	[1]	
Co/VN	92	54.29	1М КОН	[2]	
Mo/VN	108	60	1М КОН	[3]	
VN@Ni ₃ N−Ni/CC	57	40	1М КОН	[4]	
Co/N-CNT/VN	63.4	62	1М КОН	[5]	
Ru/VN	134	35	0.5 M H ₂ SO ₄	[6]	
Ru/VN	144	73	1М КОН	[6]	
Co/VN@NC	96	82	1М КОН	[7]	
MoS ₂ /VN	85	53.31	0.5 M H ₂ SO ₄	[8]	
VN/Co@NCNT	180	80.9	1М КОН	[9]	
VN/Co/P	137	81	1 M KOH	[10]	

References

- 1. P. Zhou, D. Xing, Y. Liu, Z. Wang, P. Wang, Z. Zheng, X. Qin, X. Zhang, Y. Dai and B. Huang, *J. Mater. Chem. A*, 2019, **7**, 5513-5521.
- 2. Y. Xiao, C. Tian, M. Tian, A. Wu, H. Yan, C. Chen, L. Wang, Y. Jiao and H. Fu, *Sci. China Mater*, 2017, **61**, 80-90.
- 3. B. Wei, G. Tang, H. Liang, Z. Qi, D. Zhang, W. Hu, H. Shen and Z. Wang, *Electrochem. Commun*, 2018, **93**, 166-170.
- 4. X. Dong, H. Yan, Y. Jiao, D. Guo, A. Wu, G. Yang, X. Shi, C. Tian and H. Fu, *J. Mater. Chem. A*, 2019, **7**, 15823-15830.
- 5. C. Huang, D. Wu, P. Qin, K. Ding, C. Pi, Q. Ruan, H. Song, B. Gao, H. Chen and P. K. Chu, *Nano Energy*, 2020, **73.**
- W. Wang, Y. Shao, Z. Wang, Z. Yang, Z. Zhen, Z. Zhang, C. Mao, X. Guo and G. Li, *ChemElectroChem*, 2020, 7, 1201-1206.
- 7. T. Cen, L. Qiu, Z. Ye, X. Peng, Y. Liu and D. Yuan, Int. J. Hydrogen Energy, 2021, 46, 3337-3345.
- 8. K. Meng, S. Wen, L. Liu, Z. Jia, Y. Wang, Z. Shao and T. Qi, ACS Appl. Energy Mater, 2019, **2**, 2854-2861.
- 9. L. Feng, L. Feng, J. Huang, L. Cao and K. Kajiyoshi, J. Alloys Compd, 2021, 853.
- 10. H. Yang, Y. Hu, D. Huang, T. Xiong, M. Li, M. S. Balogun and Y. Tong, *Mater. Today Chem*, 2019, **11**, 1-7.