Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Chiral diphenylacrylonitrile-perylene liquid crystal with circularly polarized luminescence in aggregated state

Hongyu Guo,^{a,b} Xue Wang,^a Wenchao Zhou,^{a,b} and Fafu Yang^{*a,c}

^a College of Chemistry and Materials, Fujian Normal University, Fuzhou350007, P.R.China; E-mail: yangfafu@fjnu.edu.cn

^bFujian Key Laboratory of Polymer Materials, Fuzhou 350007, P.R. China

^c Fujian provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, P.R. China

E-mail: yangfafu@fjnu.edu.cn

Figure S1. The ¹H NMR spectrum of compound **1**

Figure S2. MALDI-TOF-MS spectrum of compound 1

Figure S4. MALDI-TOF-MS spectrum of compound ${\bf 2}$

Figure S5. The ¹H NMR spectrum of compound **5**

Figure S6. MALDI-TOF-MS spectrum of compound 5

Figure S8. The ¹³C NMR spectrum of CPL-P

Figure S10 The absorption spectra of compounds 2, 4 and CPL-P in THF solution $(1 \times 10^{-6} \text{ M})$

Wavelength (nm)

0.0

Figure S11 The emission spectra of compounds **5** and **CPL-P** in THF solution (2×10^{-6} M) with $\lambda_{ex} = 480$ nm.

Figure S12 The emission spectra of precursor **2** with different fractions of H₂O in THF-H₂O system $(5 \times 10^{-6} \text{ M})$ with $\lambda_{ex} = 340$ nm. (inserted: Variation in intensity with fractions of H₂O in THF-H₂O system)

Figure S13 The emission spectra of sample **4** in THF/H₂O mixtures (2×10^{-6} M) with different H₂O fractions ($\lambda_{ex} = 340$ nm). (Inserted: Variation in intensity with H₂O fractions)

Figure S14 The emission spectra of sample **4** in THF/H₂O mixtures (2×10^{-6} M) with different H₂O fractions ($\lambda_{ex} = 480$ nm). (Inserted: Variation in intensity with H₂O fractions)

Figure 15 The fluorescence photographs of sample 4 and CPL-P under UV light ($\lambda_{ex} = 365 \text{ nm}$)

Figure S16. CD spectra of CPL-P in various phases

Molecular structure	CPL values in solution Φ/g_{lum}	CPL values in film Φ/g_{lum}	Reference
$R_{2}-N$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{2} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$ $R_{1} = \frac{1}{2} - \frac{1}{C_{6}H_{13}}$	or, 0.07/0.007	not mentioned	T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai and T. Haino, <i>Chem. Commun.</i> , 2012, 48 , 6025-6027
	0.88/3×10 ⁻³	Very weak(no data mentioned)	H. Tsumatori, T. Nakashima and T. Kawai, <i>Org. Lett.</i> , 2010, 12 , 2362-2365
	0.24/8×10 ⁻³	0.035/not mentioned	J. Kumar, T. Nakashima, H. Tsumatori, M. Mori, M. Naito and T. Kawai, <i>Chem.</i> <i>Eur. J.</i> , 2013, 19 , 14090- 14097
$ \begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	0.67/0.02	not mentioned	F. Li, Y. Li, G. Wei, Y. Wang, S. Li and Y. Cheng, <i>Chem. Eur. J.</i> , 2016, 22 , 12910-12915
	0.53/1.93×10 ⁻⁴	0.2/5.34×10 ⁻⁴	J. Li, C. Yang, X. Peng, Q. Qi, Y. Li,W. Lai and W. Huang, <i>Org. Biomol. Chem.</i> , 2017, 15 , 8463-8471
0378984.60	0.06/3.9×10 ⁻³	0.04/1.7×10 ⁻³	 K. Watanab, A. Taniguchi, D. Kaji, N. Hara, T. Hosoya, A. Kanesaka, T. Harada, H. Nishikawa, Y. Imai, <i>Tetrahedron</i>, 2019, 75,

Table S1 Comparison of CPL properties for perylene derivatives

			2944-2948
			A. Taniguchi, D. Kaji, N.
			Hara, R. Murata, S.
	0.76/not mentioned	0.09/2.0×10 ⁻³	Akiyama, T. Harada, A.
			Sudo, H. Nishikawa, and Y.
			Imai, RSC Adv., 2019, 9,
			1976-1982.
	$0.30/5.6 \times 10^{-4}$	$0.32/1.37 \times 10^{-3}$	This work
о с ₇ н ₁₅ с ₇ н ₁₅			