Electronic Supplementary Information

Transition-metal doped titanium-oxo clusters with diverse structures and tunable photochemical properties

Dongchun Zheng[†]^a , Xiao-Li Zhao[†]^b , Xueqi Yan^a, Weimin Xuan^c, Qi Zheng^{*}^a, Lianjun Wang^{a,d}, Wan Jiang^{a,e}

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.

^b Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry,

East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.

^c College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China

^d Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China

^e Institute of Functional Materials, Donghua University, Shanghai 201620, P. R. China

Materials: $Co(CH_3COO)_2 \cdot 4H_2O$ and $Mn(CH_3COO)_3 \cdot 2H_2O$ were purchased from Rhawn, isopropanol, acetonitrile, methanol, ethanol and titanium tetraisopropanolate were purchased from General Reagent, Nafion and $Cd(CH_3COO)_2 \cdot 2H_2O$ were purchased from Alfa and Sinopharm Chemical Reagent Co., Ltd, respectively. All reagents were of A.R. grade and used without further purification.

X-ray Crystallography: The crystallographic data of compounds were collected using a Bruker D8 venture single crystal diffractometer equipped with graphite-monochromatic Mo-K α radiation ($\lambda = 0.71073$ Å) at 150 K. Their structures were solved and refined with OLEX2 ^[1], All non-hydrogen atoms are anisotropic refined by the least square method, and the hydrogen atoms are determined by the ideal geometry by the theoretical hydrogenation method. The X-ray crystallographic data for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2118622-2118624. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>

Powder X-ray Diffraction (PXRD): Powder XRD was recorded on a Haoyuan DX-2700B diffractometer equipped with monochromatized Cu-K α ($\lambda = 1.5418$ Å) radiation in the range of $3^{\circ} \le 2\theta \le 50^{\circ}$, with a scanning rate of 0.04° s⁻¹.

Element Analyses: Element analyses for Ti, Co, Mn and Cd were performed on a Leeman Prodigy Plus inductivity-coupled plasma Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and C, N and H content were determined by VARIDEL III Elemental Analyzer.

Thermogravimetric Analysis (TGA): Thermogravimetric analysis was performed on a METTLER TOLEDO TG8000 Thermogravimetric Analyzer under nitrogen flow at a typical heating rate of 10 °C·min⁻¹.

Fourier-transform infrared (FT-IR) spectroscopy: The samples were prepared as a KBr

pellet and the FT-IR spectrum was collected in transmission mode in the range of 600-4000 cm⁻¹ using a NEXUS-670 spectrometer. Wavenumbers are given in cm⁻¹. Wavenumbers are given in cm⁻¹. Intensities are denoted as w = weak, m = medium, s = strong, vs = very strong.

Solid-state UV-vis-NIR absorption spectroscopy: All compounds were prepared into powders, which were tested in wavelength mode by integrating sphere attachment in UV3600 UV-vis- NIR spectrometer.

Photocurrent Measurement: Fresh clusters (5 mg) of compounds were dispersed in 0.95 mL ethanol and 0.05 mL Nafion mixed solution. After ultrasound for about 30 min to disperse the samples, 50 μ L suspensions were transferred by pipette and then dropped on the cleaned FTO glass (1×2 cm², 50 Ω ·cm⁻²). The photocurrent tests were carried out on a CHI650 electrochemistry workstation using a three-electrode system with a 300 W xenon lamp. The prepared FTO glass electrode was used as the working electrode, a Pt wire as the assisting electrode, and Ag/AgCl electrode as the reference electrode. A total of 100 mL of aqueous Na₂SO₄ (0.5 M) was used as the medium.

 H_2 Evolution Experiment: The experiment was carried out in a closed gas circulation system. (Perfect Light Company Labsolar-III (AG)). A total of 50 mg of samples were dispersed in 90 mL of H₂O. An additional 10 mL of methanol was added as a sacrifice agent, followed by the addition 33 µL of 1.0 wt % H₂PtCl₆. A 300 W xenon lamp was used as the light source. Online gas chromatography (GC) analysis monitors the amount of H₂ produced at intervals of 1 h.

Synthesis of H₂[Ti₂Mn₄(µ₃-O)₂(Ac)₂(BC)₁₀(OⁱPr)₂]·2H₂O (1).

Mn(CH₃COO)₃·2H₂O (0.2 mmol, 53.5 mg) and benzoic acid (1 mmol, 122.1 mg) were dissolved in acetonitrile (2 mL), then acetic acid (2 μ L) and Ti(OⁱPr)₄ (0.1 mL, 0.32 mmol) were added to the glass vial and mixed at room temperature. The resultant solution was heated at 80 °C for 3 days. After cooled to room temperature, Yellow rhombohedral crystal **1** were obtained. (yield: 38.01 mg, 13.60 % based on Ti(OⁱPr)₄). Anal. Calcd for C₈₀H₇₄O₃₀Ti₂Mn₄ (MW = 1830.91), EA: C, 52.47; H, 4.07; Ti, 5.48; Mn, 12.58, Find: C, 54.51; H, 4.70; Ti, 5.58;

Mn, 11.68. IR (KBr pellet, 4000 - 600 cm⁻¹): 3065(w), 1601(s), 1557(s), 1492(m), 1449(w), 1361(vs), 1307(w), 1176(w), 1144(w), 1104(w), 1070(w), 1025(w), 937(w), 849(w), 816(w), 715(s), 686(w), 671(m).

Synthesis of $H[Ti_8Co_5(\mu_2-O)(\mu_3-O)_{11}(BC)_{19}(CH_3CN)_2]_{0.5}[Ti_8Co_5(\mu_2-O)_2(\mu_3-O)_{10} (BC)_{18}$ (H₂O)(CH₃CN)₂]_{0.5}·5CH₃CN (2).

Co(CH₃COO)₂·4H₂O (0.2 mmol, 49.8 mg) and benzoic acid (1 mmol, 122.1 mg) were dissolved in acetonitrile (2 mL), then isopropanol (200 µL), acetic acid (2 µL) and Ti(OⁱPr)₄ (0.1 mL, 0.32 mmol) were added to the glass vial and mixed at room temperature. The resultant solution was heated at 80 °C for 3-5 days. After cooled to room temperature, Purplish red rod crystals of **2** were obtained. (yield: 26.67 mg, 19.3 % based on Ti(OⁱPr)₄). Anal. Calcd for $C_{286}H_{224}Co_{10}N_{12}O_{99}Ti_{16}$ (MW = 6768.05), EA: C, 50.75; H, 3.36; N, 2.48; Ti, 11.07; Co, 8.52, Find: C, 49.26; H, 3.58; N, 2.42; Ti, 10.41; Co, 8.49. IR (KBr pellet, 4000-600 cm⁻¹): 3628(w), 3063(w), 2163(w), 1918(w), 1598(s), 1551(s), 1492(m), 1449(m), 1390(vs), 1331(s), 1307(m), 1177(m), 1070(w), 1025(w), 827(w), 768(w), 713(s), 687(w), 672(w).

Synthesis of [Ti₁₂Cd₅(µ₂-O)(µ₃-O)₁₅(µ₄-O)₂(BC)₂₁(BCA)(Ac)(CH₃CN)]·3CH₃CN (3).

Cd(CH₃COO)₂·2H₂O (0.2 mmol, 53.3 mg) and benzoic acid (1 mmol, 122.1 mg) were dissolved in acetonitrile (2 mL), then acetic acid (2 μ L) and Ti(OⁱPr)₄ (0.1 mL, 0.32 mmol) were added to the glass vial and mixed at room temperature. The resultant solution was heated at 80 °C for 3 days. After cooled to room temperature, colorless crystals of **3** were obtained. (yield: 64.02 mg, 56.60 % based on Ti(OⁱPr)₄). Anal. Calcd for C₁₆₄H₁₂₆O₆₄N₄Ti₁₂Cd₅ (MW = 4313.20), EA: C, 45.67; H, 2.94; N, 1.30; Ti, 13.54; Cd, 13.25, Find: C, 45.18; H,3.01; N, 1.24; Ti, 13.32; Cd, 13.28. IR (KBr pellet, 4000 - 600 cm⁻¹): 3320(w), 3064(w), 2162(w), 1599(s), 1549(s), 1492(m), 1449(m), 1352(vs), 1307(v), 1176(m), 1142(w), 1105(w), 1070(w), 1025(w), 937(w), 859(w), 816(w), 715(s), 687(w), 672(w).

Atom	bond	bond length (Å)	Valance	
			Mn ^{II}	Mn ^{III}
Mn4	Mn4-O10	2.219	0.314	0.289
	Mn4-O15	2.156	0.371	0.342
	Mn4-O18	2.103	0.429	0.396
	Mn4-O19	2.188	0.341	0.315
	Mn4-O25	2.313	0.243	0.224
	Mn4-O28	2.197	0.333	0.307
SUM			2.032	1.874
Mn3	Mn3-O7	2.156	0.372	0.343
	Mn3-O7	2.217	0.316	0.291
	Mn3-O10	2.138	0.391	0.36
	Mn3-O14	2.216	0.403	0.371
	Mn3-O15	2.185	0.344	0.317
	Mn3-O17	2.146	0.382	0.352
SUM			2.207	2.035

Table S1 Bond valence sums for the Mn ions in compound 1

		5	I
Compound	1	2	3
Empirical formula	$C_{80}H_{70}Mn_4O_{28}Ti_2$	$C_{138.5}H_{107}Co_5N_{4.5}O_{49.5}Ti_8$	$C_{173}H_{119.5}Cd_{4.52}N_{8.5}O_{64}Ti_{12.48}$
Formula weight	1794.92	3304.13	4447.10
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_1/c$	Cc	<i>P</i> -1
a /Å	12.3119(4)	28.5375(10)	17.0921(6)
b /Å	15.1945(4)	18.5257(5)	20.7384(8)
c /Å	21.7763(8)	53.3966(17)	27.4498(10)
α/°	90	90	96.4130(10)
β/°	102.8930(10)	96.0990(10)	94.6680(10)
γ/°	90	90	107.9250(10)
$V/Å^3$	3971.1(2)	28069.8(15)	9130.5(6)
Ζ	2	8	2
ρ calc /g·cm ⁻³	1.501	1.564	1.618
$\mu(MoK\alpha) / mm^{-1}$	0.89	1.091	1.116
F(000)	1836	13412	4441
2θ range /°	2.681 to 25.378	1.313 to 26.390	2.079 to 25.000
Reflections collected/ unique	23524	183022	68781
Data/restraints/ parameters	7233/0/517	55477/6851/3678	31905/4608/2211
$R_1\!/\!wR_2(I\!\!>\!\!2\sigma(I))^a$	0.0500/0.0948	0.0446/0.1189	0.0749/0.2097
R_1/wR_2 (all data)	0.0932/0.1148	0.0484/0.1216	0.1089/0.2386
GooF (all data) ^b	1.04	1.042	1.032
Data completeness	99.30%	98.80 %	99.10 %
Max. peak/hole /e·Å ⁻³	0.416/-0.418	1.176/-0.689	2.986/-1.233

Table S2 Crystal data and structure refinements summary for compounds 1-3

 ${}^{a}R_{1} = \sum ||Fo|-|Fc|| / \sum |Fo|; wR_{2} = \{\sum w[(Fo)^{2}-(Fc)^{2}]^{2} / \sum w[(Fo)^{2}]^{2} \}^{1/2}$

 ${}^{b}GooF = \{\sum w[(Fo)^{2}-(Fc)^{2}]^{2}/(n-p)\}^{1/2}$

Figure S1 Unit Cell packing structure of compound 1.

Figure S2 Unit Cell packing structure of compound **2**.

Figure S3 Packing structure of compound **3**.

Figure S4 The PXRD patterns of **1**.

Figure S5 The PXRD patterns of **2**.

Figure S6 The PXRD patterns of **3**.

Figure S7 The thermogravimetric (TG) curve of **1**. The mass loss before 200 °C is corresponding to two guest water molecules (1.75 %), and the coordinated isopropanol molecules are lost between 240-260 °C (6.55 %). Afterwards, **1** begins to decompose and completely transforms to related metal oxide after 500 °C.

Figure S8 The thermogravimetric (TG) curve of **2**. The mass loss before 200 °C is corresponding to solvent/coordinated acetonitrile (4.2 % in total). When the temperature exceeds 380 °C, **2** begins to decompose and completely transforms to related metal oxide after 500 °C.

Figure S9 The thermogravimetric (TG) curve of **3**. The mass loss before 200 °C is corresponding to solvent/coordinated acetonitrile (3.8% in total), the monodentate coordinated acetic acid is lost between 200-320 °C (4.2%). Afterwards, **1** begins to decompose and completely transforms to related metal oxide after 400 °C.

Figure S10 The FT-IR spectrum of **1**. The absorption bands between $3000-2800 \text{ cm}^{-1}$ can be ascribed to the stretching vibrations of C-H bonds from benzene rings and alkyl groups. The characteristic stretching vibrations of carboxylate ($1633-1550 \text{ cm}^{-1}$) and v(C=C) in benzene rings are overlapped from 1633 cm^{-1} to 1350 cm^{-1} . Besides, the intense absorption peaks between $1100-1000 \text{ cm}^{-1}$ are assigned to the stretching vibrations of v(C–O) from isopropanol.

Figure S11 The FT-IR spectrum of **2**. The weak absorption bands between 3100–3000 cm⁻¹ and strong absorption bands centered at 1633 cm⁻¹and 1370 cm⁻¹, which can be ascribed to the stretching vibration modes of C-H bonds in benzene rings and v(C=O) of carboxylate, v(C=C) in benzene rings, respectively. The weak absorption bands between 2250–2150 cm⁻¹ can be ascribed to the stretching vibration of C=N bonds in acetonitrile molecules.

Figure S12 The FT-IR spectrum of **3**. The FT-IR spectrum of **3** is quite similar to **2**, with the absorption bands assigned in the same way. See Figure S11 for details.

Figure S13 The band gap of **1**.

Figure S14 The band gap of **2**.

Figure S15 The band gap of **3**.

Reference

[1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H.Puschmann. "OLEX2: a complete structure solution, refinement and analysis program". J. Appl. Cryst. 2009, 42, 339-341.