Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Support information

Bi-doped Graphitic Carbon Nitride Nanotubes Boosts the Degradation Photocatalysis of Rhodamine B

Qingqing Gao^{a,b#}, Qian Lei^{a#}, Ruoyan Miao^a, Manyi Gao^{a,b}, Hu Liu^{a*}, Qin Yang^a, Yequn Liu^c, Fang Song^d, Yongsheng Yu^{b*}, Weiwei Yang^{b*}

^aSchool of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

^bMIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.

^cInstitutional Center for Shared Technologies and Facilities of Institute of Coal Chemistry, CAS, State Key Laboratory of Coal Conversion, Taiyuan 030001, China. ^dInstrumental Analysis Center, Xi'an University of Architecture and Technology, Xi'an 710055, China.

*To whom correspondence should be addressed. Email: liuhu@xauat.edu.cn, yangww@hit.edu.cn and ysyu@hit.edu.cn

[#]These authors contributed equally.

Electrochemical measurements

The electrochemical characteristics and electrochemical impedance spectroscopy (EIS) were measured on an electrochemical workstation (CHI660E, China) with a threeelectrode system to describe the carrier transfer process of the samples during the reaction. The sample was prepared as a working electrode while an Ag/AgCl electrode and a Pt slice worked as a reference electrode and a counter electrode, respectively. All the electrochemical testing was conducted in 0.2 M Na₂SO₄ solution.

Fig. S1. SEM images of (a) PCN, (c) PCN-1; TEM images of (b) PCN, (d) PCN-1.

Fig. S2. SEM images of (a) 0.05BCN, (c) 0.2BCN, (e) 0.4BCN; TEM images of (b) 0.05BCN, (d) 0.2BCN, (f) 0.4BCN.

Fig. S3. SEM-EDS of the 0.1BCN

Figure S4. a) N₂ adsorption-desorption isotherm and b) pore-size distribution curves of 0.1BCN.

Fig. S5. The EIS plots of PCN, PCN-1 and 0.1BCN.

Figure S6. ESR signals of DMPO-·OH adducts in 0.1BCN dispersion of water under 120 s illumination.

Fig. S7. XRD of 0.1BCN before and after use for four times

Table ST mass percentage of DI mill City T and xDeity samples							
Sample	PCN-1	0.05BCN	0.1BCN	0.2BCN	0.4BCN		
Bi(wt%)	0	5.04	6.48	13.35	25.49		

Table S1 mass percentage of Bi in PCN-1 and xBCN samples

Sample	N(wt%)	C(wt%)	C/N (in mol)
PCN-1	56.925	32.765	0.67
0.1BCN	51.81	29.81	0.62

Table S2 contents of C and N in PCN-1 and 0.1BCN samples