Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Material

The enhanced thermal stability and reduced hygroscopicity of aluminum hydride coated with Vinyltrimethoxysilane.

Zhe Shi,^a Taojie Lu,^a Jian Zhang,^{*a} Zhaoyang Zhu,^{*b} Yidong Xu,^a Debin Xia,^a Yinghui Hu,^a Kaifeng Lin,^a and Yulin Yang^{*a}

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.

^b Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China.

* Corresponding author. ^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
^b Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China.
E-mail addresses: zhaji@hit.edu.cn (J. Zhang), zhuzhaoyang1101@163.com (Z. Y. Zhu), ylyang@hit.edu.cn (Y.L. Yang).

Table of Contents

Section 1. The reaction mechanism of α-AlH ₃ with A171 and the	
surface atomic content and XPS full spectrum of α-AlH ₃ and α-	
AlH ₃ @A171 composite	S-3
Section 2. SEM images and size distribution of α-AlH ₃ and α-	
AlH ₃ @A171 composites	S-4
Section 3. TEM image of α-AlH ₃ and α-AlH ₃ @A171 composite	S-5
Section 4. EDS mapping of Al, Si, C, and O in α-AlH ₃	S-6
Section 5. TG/DSC curves of α-AlH ₃	S-7
Section 6. Photographs of α -AlH ₃ and α -AlH ₃ (α A171 composite	
before hygroscopicity	S-8
Section 7. Photographs of α -AlH ₃ and α -AlH ₃ @A171 composite were	
placed in water for 30 min	S -9
F ·····	

Section 1. The reaction mechanism of α -AlH₃ with A171 and the surface atomic content and XPS full spectrum of α -AlH₃ and α -AlH₃@A171 composite.

Fig. S1 Reaction process of A171 with α-AlH₃ surface and formation of organic layer.

Table S1 The XPS analysis of the specific atomic content of C, O, Al and, Si elements in the α -AlH₃ and α -AlH₃@A171 composite.

	C element	O element	Al element	Si element
	(atomic content	(atomic	(atomic	(atomic content
	%)	content %)	content %)	%)
α-AlH ₃	1.55	54.34	44.41	0
α-AlH ₃ @A171	26.22	38.54	26.35	8.89

Fig. S2 The XPS full spectrum of the α -AlH₃ and α -AlH₃@A171 composite.

Section 2. SEM images and size distribution of α -AlH₃ and α -AlH₃@A171 composite.

Fig. S4 SEM image (a) and size distribution (b) of α-AlH₃@A171 composite.

Section 3. TEM image of α-AlH₃ and α-AlH₃@A171 composite.

Fig. S5 TEM image of α -AlH₃(a) and α -AlH₃@A171 composite (b).

Section 4. EDS mapping of Al, Si, C and O in α-AlH₃.

Fig. S6 EDS mapping of Al, Si, C, and O in α -AlH₃.

Section 5. TG/DSC curves of α-AlH₃.

Fig. S7 TG/DSC curves of the α -AlH₃.

Section 6. Photographs of α -AlH₃ and α -AlH₃@A171 composite before hygroscopicity.

Fig. S8 Morphology before the moisture absorption of the α -AlH₃ and α -AlH₃@A171 (30 °C, RH 80%).

Section 7. Photographs of α -AlH₃ and α -AlH₃@A171 composite were placed in water for 30 min.

Fig. S9 Photographs of the α-AlH₃ and α-AlH₃@A171 were placed in water (25 °C) for 30 min.