Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

1 | Page

Supplementary Information for the paper

Design, synthesis, characterization, *in vitro* screening, molecular docking, 3D-QSAR, and ADME-Tox investigations of novel pyrazole derivatives as antimicrobial agents

Mohammed Chalkha^{*a*,‡}, Mohamed Akhazzane^{*ab*,‡}, Fatima Zahrae Moussaid^{*c*,‡}, Ossama Daoui^{*d*,‡}, Asmae Nakkabi^{*a*}, Mohamed Bakhouch^{*ae*}, Samir Chtita^{*,*f*}, Souad Elkhattabi^{*d*}, Abdelilah Iraqi Housseini^{*c*}, Mohamed El Yazidi^{*,*a*}

 ^a-Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 (Atlas), 30000 Fez, Morocco
^b-Université Sidi Mohamed Ben Abdellah, Cité de l'innovation, Fès, Maroc
^c-Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi Mohamed Ben Abdellah (USMBA), 30050 Fez, Morocco.
^d-Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
^e-Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, 24000 El Jadida, Morocco
^f-Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, B.P. 7955, Casablanca, Morocco

*Corresponding authors -E-mail: <u>elyazidimohamed@hotmail.com</u> (El Yazidi Mohamed), <u>samirchtita@gmail.com</u> (CHTITA Samir)

[‡] These authors contributed equally in this collaborative work.

Table of Contents

Tabl	le S1 Physical and spectroscopic characterization data of the synthesized compounds	S3
Figu	ure S1. Plots of experimental and predicted MIC values for the 14 pyrazoles used in CoMFA model	S4
Figu	ure S2. Plots of experimental and predicted MIC values for the 14 pyrazoles used in CoMSIA model	S5
Figu	ure S3. The plot of residuals for the training sets obtained from the CoMFA and CoMSIA models	S5
Tabi	le S2 Structures and their predicted MIC of newly designed inhibitors based on 3D-QSAR models	S6
Tabi	le S3 Prediction of drug-likeness for the synthesized 14 compounds and 16 designed ones	S9
Tabi	le S4 ADMET properties	S 11
Tabi	le S5 Summary of molecular docking results	S13
Figu	ure S4. Visualization's 3D and 2D of docking results of the ligands designed.	S 16
1.	Chemical reagents and instruments	S17
2.	Characterization data of all synthesized pyrazoles (4-9)	S17
3.	Antimicrobial Activity	S24
4.	FT-IR, ¹ H, ¹³ C NMR and HRMS spectra of synthesized compounds	S25
5.	References (cited in SI):	S65

N°	R	Time	Formula	M.p ^b	Yield ^c	NMR- ¹ H (pp	pm)	¹³ C-NMR (ppm)	IR(cm ⁻¹)	HRMS (m/z)
	K	(h)	(M.)	(°C)	(%)	R_1/R_2	NH	R_1 and R_2	NH	$[M+H]^+$
<u>4a</u>	Н	4	C ₃₀ H ₂₅ N ₃ O (443.1998)	160-162	92	$C\underline{H}_{2}(3.26)$ $C\underline{H}_{3}(1.32)$	8.72	$\frac{CH_2(37.2)}{CH_3(14.4)}$	3316	444.2088
<u>4b</u>	OCH ₃	5	$\begin{array}{c} C_{31}H_{27}N_{3}O_{2}\\ (473.2103)\end{array}$	146-148	84	$C\underline{H}_{2}(3.26)$ $C\underline{H}_{3}(1.32)$	8.73	$\frac{CH_2(37.2)}{CH_3(14.4)}$	3314	474.2180
<u>5a</u>	Н	10	C ₃₅ H ₂₇ N ₃ O (505.2154)	170-172	70	C <u>H</u> ₂ (4.51)	9.24	<u>C</u> H ₂ (46.4)	3312	506.2228
<u>5b</u>	OCH ₃	8	C ₃₆ H ₂₉ N ₃ O ₂ (535.2260)	188-190	88	C <u>H</u> ₂ (4.51)	9.25	<u>C</u> H ₂ (46.4)	3327	536.2342
<u>5c</u>	Cl	7	C ₃₅ H ₂₆ ClN ₃ O (539.1764)	138-140	65	C <u>H</u> ₂ (4.52)	9.25	<u>C</u> H ₂ (46.4)	3335	540.1845
<u>5d</u>	CH ₃	9	C ₃₆ H ₂₉ N ₃ O (519.2311)	152-154	76	C <u>H</u> ₂ (4.51)	9.24	<u>C</u> H ₂ (46.4)	3300	520.2394
<u>6a</u>	Н	11	C ₃₁ H ₂₅ N ₃ O (455.1998)	148-140	66	$C\underline{H}_{2}(3.91) \\ \underline{H}C=C (5.93) \\ C=C\underline{H}_{2}(5.21)$	8.96	<u>C</u> H ₂ (44.7)	3292	456.2081
<u>6b</u>	OCH ₃	10	C ₃₂ H ₂₇ N ₃ O ₂ (485.2103)	146-148	73	$C\underline{H}_{2}(3.9) \\ \underline{H}C=C (5.94) \\ C=C\underline{H}_{2}(5.2)$	8.96	<u>C</u> H ₂ (44.7)	3346	486.2181
<u>6c</u>	Cl	8	C ₃₁ H ₂₄ ClN ₃ O (489.1608)	130-132	69	$C\underline{H}_{2}(3.92) \\ \underline{H}C=C 5.94) \\ C=C\underline{H}_{2}(5.23)$	8.97	<u>C</u> H ₂ (44.7)	3352	490.1697
<u>7a</u>	Н	9	C ₃₁ H ₂₃ N ₃ O (453.1841)	178-180	57	$C\underline{H}_{2}(4.03)$ $C\equiv C\underline{H}(2.26)$	8.85	$\underline{CH}_{2}(32.2)$ $\underline{C}=C(79.5)$ $C=\underline{CH}(71.5)$	3329	454.1925
<u>7b</u>	OCH ₃	5	$\begin{array}{c} C_{32}H_{25}N_{3}O_{2}\\ (483.1947)\end{array}$	170-172	68	$C\underline{H}_{2}(4.03)$ $C\equiv C\underline{H}(2.26)$	8.86	$\underline{CH}_{2}(32.2)$ $\underline{C} = C (79.6)$ $C = \underline{CH} (71.5)$	3323	484.2022
<u>8a</u>	Н	2	C ₂₉ H ₂₃ N ₃ O (429,1841)	200-202	83	C <u>H</u> ₃ (2.92)	8.80	<u>C</u> H ₃ (29.3)	3316	430.1931
<u>8b</u>	OCH ₃	2.30	C ₃₀ H ₂₅ N ₃ O ₂ (459,1947)	176-178	89	C <u>H</u> ₃ (2.92)	8.79	<u>C</u> H ₃ (29.3)	3309	460.2040
<u>8c</u>	Cl	3	C ₂₉ H ₂₂ ClN ₃ O (463,1451)	174-176	76	C <u>H</u> ₃ (2.93)	8.81	<u>C</u> H ₃ (29.3)	3350	464.1540
<u>8d</u>	CH ₃	1	C ₃₀ H ₂₅ N ₃ O (443,1998)	172-174	91	C <u>H</u> ₃ (2.92)	8.81	<u>C</u> H ₃ (29.3)	3318	444.2092
<u>9a</u> c	Н	14	C ₃₀ H ₂₅ N ₃ O (443,1998)	180-182	55	2C <u>H</u> ₃ (2.67)	-	2 <u>C</u> H ₃ (43.9)	-	444.2069
<u>9b</u> °	OCH ₃	13	$\begin{array}{c} C_{31}H_{27}N_{3}O_{2}\\ (473,2103)\end{array}$	134-136	67	2C <u>H</u> ₃ (2.67)	-	2 <u>C</u> H ₃ (44.0)	-	474.2189
<u>9c</u> °	Cl	17	C ₃₀ H ₂₄ ClN ₃ O (477,1608)	164-166	59	2C <u>H</u> ₃ (2.67)	-	2 <u>C</u> H ₃ (44.1)	-	478.1701
<u>9d</u> c	CH_3	12	$C_{31}H_{27}N_{3}O$ (457 2154)	158-160	74	2C <u>H</u> ₃ (2.68)	-	2 <u>C</u> H ₃ (44.0)	-	458.2250

Table S1 Physical and spectroscopic characterization data of the synthesized compounds.

^a Reagents and conditions: **3a-d** (1 equiv), R-X (1 equiv), DMF (20 mL), BTBA (0,5 equiv.), NaH (1 equiv), rt.

^b Isolated yield.

^c Conditions: **3a-d** (1 equiv), CH₃I (2 equiv), NaH (2 equiv).

Figure S1. Plots of experimental and predicted MIC values for the 14 pyrazoles used in CoMFA model

Figure S2. Plots of experimental and predicted MIC values for the 14 pyrazoles used in CoMSIA model

Figure S3. The plot of residuals for the training sets obtained from the CoMFA and CoMSIA models

References	Structure	(Pred MIC) CoMFA	(Pred MIC) CoMSIA
C1	$O \leftarrow OH \\ NH O \\ NH O \\ N \\ O = N \\ O \\ O$	1.424	2.434
C2	HO O O O O O O O O O O O O O O O O O O	2.488	2.412
C3	O OH NH O NH O HO	1.636	2.172
C4	O OH NH O NH O N	2.267	3.286

Table S2 Structures and their predicted MIC of newly designed inhibitors based on 3D-QSAR models.

S8]

Table S3 Prediction of drug-likeness for the synthesized 14 compounds and 16 designed ones.

	MW(Da)	LogP	n-OHNH acceptors	n- OHNH donors	Lipinski's violations	Drug- Like	n- ROTB	TPSA(A ²)	Flexibility	S.A		
Rule	<500	≤5	<10	≤5	<2	Yes/No	≤10	<140	Yes/No	0 <s.a<10< td=""></s.a<10<>		
Synthesized molecules												
5b	535.647	4.55	3	1	1	No	9	46.92	Yes			
5c	540.066	4.78	2	1	1	No	8	56.15	Yes			
6a	455.561	3.85	2	1	0	Yes	8	46.92	Yes			
6b	485.587	4.77	3	1	0	Yes	9	56.15	Yes			
6с	490.006	4.24	2	1	0	Yes	8	46.92	Yes			
7a	453.545	4.16	2	1	0	Yes	7	46.92	Yes			
7b	483.571	4.06	3	1	0	Yes	8	46.92	Yes			
8a	429.523	4.11	2	1	0	Yes	6	56.15	Yes			
8b	459.549	4.28	3	1	0	Yes	7	46.92	Yes			
8c	463.968	3.86	2	1	0	Yes	6	46.92	Yes			
9a	443.550	3.87	2	0	0	Yes	6	56.15	Yes			
9b	473.576	3.92	3	0	0	Yes	7	46.92	Yes			
9c	477.995	4.11	2	0	0	Yes	6	56.15	Yes			
9d	457.577	4.00	2	0	0	Yes	6	46.92	Yes			
				De	signed molec	ules						
C1	518.52	2.72	6	2	1	Yes	9	130.04	Yes	4.15		
C2	503.55	3.71	5	2	1	Yes	9	93.45	Yes	3.89		
C3	489.52	3.04	5	3	0	Yes	8	104.45	Yes	3.80		
C4	463.48	3.27	5	2	0	Yes	8	97.36	Yes	3.89		
C5	477.51	3.23	5	3	0	Yes	9	115.18	Yes	4.02		
C6	503.55	2.80	5	4	1	Yes	9	122.27	Yes	3.95		
C7	488.54	2.97	5	3	0	Yes	8	110.24	Yes	3.82		
C8	462.50	3.30	5	2	0	Yes	8	103.15	Yes	3.90		
С9	476.53	3.49	5	1	0	Yes	8	94.36	Yes	4.02		
C10	400.43	2.77	5	2	0	Yes	7	103.15	Yes	3.49		

C11	415.44	2.80	5	3	0	Yes	8	115.18	Yes	3.63
C12	455.51	3.10	5	3	0	Yes	9	111.27	Yes	3.63
C13	470.48	2.42	6	3	0	Yes	9	147.86	No	3.63
C14	493.58	3.29	4	3	0	Yes	9	130.28	Yes	3.95
C15	479.55	2.68	4	2	0	Yes	8	112.46	Yes	3.82
C16	478.56	3.33	4	2	0	Yes	8	118.25	Yes	3.83

MW: Molecular Weight, MLog P: logarithm of partition coefficient of compound between n-octanol and water, n-OHNH acceptors: Number of hydrogen bond acceptors, n-OHNH donors: Number of hydrogen bonds donors, n-ROTB: Number of Rotatable Bonds, S.A: Synthetic accessibility, TPSA: Topological Polar Surface Area.

Table S4 ADMET properties

	Properties															
	Absor	ption		Distribution		Metabolism						Excretion		Toxicity		
S	Intestinal								CYP							Oral Rat
del	absorption	P-Gp	VDss	BBB	CNS	Subs	strate		-	Inhibitor	1	1	Total	AMES	Skin	Acute
mc	(human)	substrate	(human)	permeability	permeability	2D6	3A4	1A2	2C19	2C9	2D6	3A4	clearance	toxicity	Sensitisation	Toxicity
																(LD50)
	(po	al														
ity	eric	orric (no)	Numeric	Numeric	Numeric	Numeric (log Categorical Ca						Categorical	Numeric			
Un	lum absc	teg	(Log L kg^{-1})	(Log BB)	(Log PS)		Categorical (Yes/No) mL min ⁻¹ kg ⁻¹) (Yes/No)						(Yes/No)	(mol/kg)		
	N (%i	Ca ()													
	Predicted values of synthesized molecules															
5b	96.432	No	-0.848	0.272	-1.373	No	Yes	Yes	No	No	No	No	0.600	No	No	2.917
5c	93.336	Yes	-0.744	0.422	-0.030	No	Yes	Yes	No	No	No	No	0.040	No	No	3.107
6a	99.870	No	-0.755	0.099	-0.549	No	Yes	No	Yes	Yes	No	No	0.685	No	No	3.881
6b	96.278	No	-0.985	0.171	-1.646	No	Yes	No	Yes	Yes	No	Yes	0.669	No	No	4.148
6c	94.430	No	-0.918	0.299	-0.599	No	Yes	No	Yes	Yes	No	Yes	0.204	No	No	4.006
7a	100	Yes	-0.788	-0.146	-0.141	No	Yes	No	Yes	Yes	No	No	0.563	No	No	3.89
7b	97.554	No	-1.009	0.195	-1.662	No	Yes	No	Yes	Yes	No	No	0.615	No	No	4.16
8 a	99.723	No	-0.758	0.163	-0.508	No	Yes	No	Yes	Yes	No	Yes	0.625	No	No	2.932
8b	100	No	-0.820	-0.236	-0.236	No	Yes	No	Yes	Yes	No	No	0.657	No	No	2.747
8 c	98.176	Yes	-0.756	0.132	-0.506	No	Yes	No	Yes	Yes	No	No	0.150	No	No	3.047
9a	100	No	-0.766	0.283	-0.796	No	Yes	No	Yes	Yes	No	Yes	0.694	No	No	2.885
9b	99.089	No	-0.752	0.307	-0.801	No	Yes	No	Yes	Yes	No	No	0.734	No	No	2.648
9 c	100	No	-0.769	0.224	-0.845	No	Yes	No	Yes	Yes	No	No	0.209	No	No	3.034
9d	100	No	-0.772	0.237	-0.845	No	Yes	No	Yes	Yes	No	No	0.697	No	No	3.028
						Predicte	d values	of design	ed molect	ules				•		
~	ic	ical o)	Numeric													
nity	mer sorl	gor s/n	(Log L kg ⁻	Numeric	Numeric			Catego	orical (Yes	s/No)			Numeric (log	Categorical	Categorical	Numeric
n	Nur óab	ate; (ye	1)	(Log BB)	$\left \begin{array}{c} (\text{Log PS}) \\ \text{mL min}^{-1} \text{ kg}^{-1} \\ \text{(Yes/No)} \\ (Ye$						(Yes/No)	(mol/kg)				
C1	100	No	1 200	1 407	2 215	No	Vac	Vac	No	No	No	No	0.749	No	No	2 565
U	100	INO	-1.300	-1.407	-2.215	INO	res	1 es	INO	INO	INO	INO	0.748	10	INO	2.303

ſ

12	Ра	g e
----	----	-----

C2	82	Yes	-1.348	-1.128	-2.117	No	Yes	No	No	Yes	No	No	0.383	No	No	2.840
C3	77.581	Yes	-1.387	-1.417	-2.148	No	Yes	Yes	No	Yes	No	No	0.328	No	No	2.509
C4	82	Yes	-0.911	-1.062	-1.962	Yes	Yes	Yes	No	Yes	No	No	0.373	No	No	2.506
C5	92	Yes	-0.68	-1.396	-2.304	Yes	Yes	No	Yes	Yes	No	No	0.312	No	No	2.560
C6	87	Yes	-1.305	-1.403	-2.489	No	Yes	No	Yes	Yes	No	No	0.178	No	No	2.567
C7	94	Yes	1.303	-1.199	-2.144	No	Yes	Yes	No	Ye	No	No	0.315	No	No	2.644
C8	99	Yes	-0.595	-1.028	-1.958	No	Yes	Yes	Yes	No	Yes	No	0.514	No	No	2.537
C9	100	Yes	-0.261	-1.018	-1.893	No	Yes	No	Yes	No	No	No	0.433	No	No	2.262
C10	92	Yes	0.318	-0.945	-2.25	No	Yes	Yes	No	No	No	Yes	0.671	No	No	2.666
C11	86	Yes	-0.298	-1.361	-2.595	Yes	Yes	Yes	Yes	Yes	No	Yes	0.291	Yes	No	2.271
C12	88	Yes	-0.96	-1.362	-2.738	No	Yes	No	Yes	Yes	No	Yes	0.281	Yes	No	2.774
C13	83	Yes	-1.273	-1.372	-2.733	No	Yes	No	Yes	Yes	No	Yes	0.359	Yes	No	2.575
C14	94	Yes	-1.111	-1.349	-2.306	Yes	Yes	No	Yes	Yes	No	No	0.027	No	No	2.554
C15	96	Yes	-1.253	-1.06	-1.965	No	Yes	No	No	Yes	No	No	0.184	No	No	2.504
C16	97	Yes	-1.086	-1.024	-1.961	No	Yes	No	Yes	No	Yes	No	0.562	No	No	2.265

Ligands	Binding LigandsHydrogen-Bonding (kcal/mol)Kcal/molInteraction		Electrostatic Interaction	Hydrophobic Interaction
5c	-9.2	SER31 and TYR32	LYS243	LEU291, VAL292, VAL36, TYR22, PHE118
C1	-8.8	ARG167, LEU291 and TY124	ASP121	PHE118, VAL292 and TYR124
C2	C2 -8.9 TYR32, SER31, GLU29, LYS243 and TYR22		-	LEU291, VAL326 and VAL292
C3	-8.9	TYR32, SER31 and LYS243	-	LEU291, VAL326 and VAL292
C4	-9.0	TYR32, SER31 and LYS243	-	LEU291, VAL326, TYR32 and VAL292
C5	-9.2	TYR32, SER31 and LYS243	-	LEU291, VAL326 and VAL292
C6 -9.2		TYR32, SER31, GLU29 and LYS243	-	LEU291, VAL326, TYR32 and VAL292
C7	-9.2	TYR32 and SER31	-	LEU291, VAL326, TYR32 and VAL292
C8	-9.2	TYR32, SER31 and GLY327	-	LEU291, VAL326, TYR32 and VAL292
С9	-8.3	LEU291	-	TYR32, VAL326, ILE318, VAL292 and PRO239
C10	-8.2	TYR32 and GLY327	ASP121	VAL292, VAL326, LEU291 and TYR32
C14	-9.2	LYS243, SER31 and TYR32	-	TYR32, VAL292, VAL326 and LEU291
C15	-8.8	SER31, LYS243 and TYR32	-	TYR32, VAL292, VAL326 and LEU291
C16	-9.0	TYR32, SER31 and GLY327	-	LEU291, VAL326, TYR32 and VAL292
Ampicillin	-7.6	SER31, GLY327, LYS243, THR241	-	TYR124 and Val292
Streptomycin	-9.1	ALA123, ASP113, PRO116, LEU115, GLU117 , GLU119, GLU33 and ARG132	-	TYR40

Table S5 Summary of molecular docking results

1. Chemical reagents and instruments

All chemicals used were of analytical grade and were used without further purification and were purchased from commercial suppliers. The progress of the reactions was monitored by TLC (Merck, silica gel 60 F254), and spots were visualized under UV light (VILBER LOURMAT, VL-215.LC). Column chromatography was performed using Merck silica gel (70-230 mesh) and n-hexane / diethyl ether mixture as eluent. The melting points were determined with an uncertainty of ± 2 °C using a KOFLER BENCH. The IR spectra were recorded in the range of 450–4000 cm⁻¹ on a BRUKER VERTEX 70 FT-IR Spectrometer, and wavenumbers are given in cm⁻¹. The NMR spectra (¹H and ¹³C) were recorded at room temperature on a BRUKER AVANCE II 300 Ultra-Shield (300 MHz for ¹H and 75 MHz for ¹³C) spectrometer using CDCl₃ as solvent. For the ¹³C NMR spectra, the APT experiment was used, which provide information on the multiplicity of the 13 C signals (CH₃, CH₂, CH and C_q). In these spectra, the negative signals correspond to the CH₃ and CH carbons and the positive signals correspond to the CH₂ and quaternary C carbons. The chemical displacements are expressed in ppm and the coupling constants J are expressed in Hertz (Hz). The spin multiplicities are reported as singlet (s), doublet (d), triplet (t), multiplet (m), doublet of doublets (dd), doublet of triplets (dt) and broad (br). High-resolution mass spectra were recorded on a Waters/Vion IMS-QTOF: Spectrometer-, equipped with an electrospray ionization (ESI), source operating in either positive and negative ion mode.

2. Characterization data of all synthesized pyrazoles (4-9)

a) 5-(2-ethylaminobenzoyl)-1,3,4-triphenyl-1H pyrazole (4a)

Yield (92 %); m.p.: 160-162 °C; FT-IR (ν_{max} , cm⁻¹): 3316 (N-H), 3075, 3054 and 3032 (C-H aromatic), 2958, 2920 and 2866 (C-H aliphatic), 1613 (>C=O), 1575 (>C=N, pyrazole ring), 1515, 1499 (>C=C<, aromatic ring), 1455, 1427 (C-N<); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 1.32 (t, 3H, $-C\underline{H}_3$, J = 7.2 Hz), 3.22-3.31 (m, 2H, $-C\underline{H}_2$ –), 6.27-6.33 (m, 1H, Ar– \underline{H}), 6.61 (d, 1H, Ar– \underline{H} , J = 8.7 Hz), 7.19-7.39 (m, 13H, Ar– \underline{H}), 7.53-7.59 (m, 4H, Ar– \underline{H}), 8.72 (t, 1H, N– \underline{H} , J = 4.8 Hz); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 14.4 (\underline{C} H₃), 37.2 (\underline{C} H₂), 111.3, 114.1, 117.5, 122.1, 123.6, 127.0, 127.5, 127.9, 128.2, 128.4, 129.1, 129.9, 131.9, 132.5, 134.7, 136.0, 139.8, 139.9 (> \underline{C} –N<), 149.8 (> \underline{C} =N–), 151.7 (> \underline{C} –NH–), 190.3 (> \underline{C} =O); ESI-QTOF-MS (m/z): mass calculated for [C_{30} H₂₅N₃O+ H]⁺: 444.20855, found: 444.20888.

b) 5-(2-ethylaminobenzoyl)-4-(4-methoxyphenyl)-1,3-diphenyl-1H-pyrazole (4b)

Yield (84 %); m.p.: 146-148 °C; FT-IR (v_{max} , cm⁻¹): 3314 (N-H), 3060 (C-H aromatic), 2969, 2936, 2873 and 2836 (C-H aliphatic), 1618 (>C=O), 1568 (>C=N, pyrazole ring), 1498 (>C=C<, aromatic ring), 1458 and 1426 (C-N<), 1245 (C-O); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 1.33 (t, 3H, $-C\underline{H}_3$, J = 7.2 Hz), 3.22-3.31 (m, 2H, $-C\underline{H}_2$ -), 3.76 (s, 3H, $-OC\underline{H}_3$), 6.29-6.34 (m, 1H, Ar- \underline{H}), 6.61 (d, 1H, Ar- \underline{H} , J = 8.7 Hz), 6.76 (d, 2H, Ar- \underline{H} , J = 8.7 Hz), 7.13-7.20 (m, 2H, Ar- \underline{H}), 7.22-7.38 (m, 8H, Ar- \underline{H}), 7.52-7.60 (m, 4H, Ar- \underline{H}), 8.73 (t, 1H, N- \underline{H} , J = 4.8Hz); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 14.4 (\underline{C} H₃), 37.2 (\underline{C} H₂), 55.1 ($-O\underline{C}$ H₃), 111.3, 113.7, 114.1, 117.5, 121.8, 123.5, 124.1, 127.5, 127.8, 128.2, 128.4, 129.1, 131.0, 132.7, 134.7, 136.0, 139.8, 139.9 (> \underline{C} -N<), 149.8 (> \underline{C} =N-), 151.7 (> \underline{C} -NH-), 158.6 (> \underline{C} -OCH₃), 190.5 (> \underline{C} =O); ESI-QTOF-MS (m/z): mass calculated for [C₃₁H₂₇N₃O₂+ H]⁺: 474.21785, found: 474.21800.

c) 5-(2-benzylaminobenzoyl)-1,3,4-triphenyl-1H-pyrazole (5a)

Yield (70 %); m.p.: 170-172 °C; FT-IR (ν_{max} , cm⁻¹): 3312 (N-H), 3083, 3056 and 3031 (C-H aromatic), 2916 and 2852 (C-H aliphatic), 1613 (>C=O), 1569 (>C=N, pyrazole ring), 1515 and 1496 (>C=C<, aromatic ring), 1428 (C-N<); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 4.51 (d, 2H, -C<u>H</u>2–, *J* = 5.7 Hz), 6.31-6.36 (m, 1H, Ar–<u>H</u>), 6.55 (d, 1H, Ar–<u>H</u>, *J* = 8.7 Hz), 7.14-7.41 (m, 18H, Ar–<u>H</u>), 7.56-7.61 (m, 4H, Ar–<u>H</u>), 9.24 (t, 1H, N-<u>H</u>, *J* = 5.7 Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 46.4 (<u>C</u>H₂), 112.0, 114.9, 118.2, 122.3, 123.7, 126.8, 127.2, 127.3, 127.8, 128.0, 128.4, 128.5, 128.7, 129.2, 129.9, 131.8, 132.5, 134.6, 136.1, 136.4, 138.2, 139.8, 140.0 (><u>C</u>–N<), 149.9 (><u>C</u>=N–),151.5 (><u>C</u>–NH–), 190.7 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₅H₂₇N₃O+ H]⁺: 506.22281, found: 506.22288.

d) 5-(2-benzylaminobenzoyl)-4-(4-methoxyphenyl)-1,3-diphenyl-1H-pyrazole (5b)

Yield (88 %); m.p.: 188-190 °C; FT-IR (ν_{max} , cm⁻¹): 3313 (N-H), 3059, 3027 (C-H aromatic), 2931 and 2834 (C-H aliphatic), 1621 (>C=O), 1563 (>C=N, pyrazole ring), 1492 (>C=C<, aromatic ring), 1446 (C-N<), 1236 (C-O); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 3.77 (s, 3H, -OC<u>H</u>₃), 4.51 (d, 2H, -C<u>H</u>₂-, *J* = 6 Hz), 6.32-6.38 (m, 1H, Ar-<u>H</u>), 6.62-6.65 (m, 2H, Ar-<u>H</u>), 7.08-7.28 (m, 9H, Ar-<u>H</u>), 7.30-7.40 (m, 12H, Ar-<u>H</u>), 9.25 (t, 1H, N<u>H</u>, *J* = 5.7 Hz); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 46.4 (<u>CH</u>₂), 55.0 (-O<u>C</u>H₃), 111.9, 114.8, 118.2, 123.6, 125.5, 126.8, 127.2, 128.2, 128.3, 128.4, 128.7, 128.7, 129.1, 131.0, 131.9, 136.5, 138.2, 139.8, 140.0, 140.1 (><u>C</u>-N<), 149.9 (><u>C</u>=N-), 151.5 (><u>C</u>-NH-), 158.7 (><u>C</u>-OCH₃), 190.0 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₁H₂₇N₃O₂H]⁺: 536.2335, found: 536.2342.

e) 5-(2-benzylaminobenzoyl)-4-(4-chlorophenyl)-1,3-diphenyl-1H-pyrazole (5c)

Yield (65 %); m.p.: 138-140 °C; FT-IR (ν_{max} , cm⁻¹): 3335 (N-H), 3027 (C-H aromatic), 2915 and 2855 (C-H aliphatic), 1619 (>C=O), 1572 (>C=N, pyrazole ring), 1512 and 1494 (>C=C<, aromatic ring), 1428 (C-N<), 757 (C-Cl); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 4.52 (d, 2H, – C<u>H</u>2–, *J* = 6 Hz), 6.33-6.39 (m, 1H, Ar–<u>H</u>), 6.59 (d, 1H, Ar–<u>H</u>, *J* = 8.4 Hz), 7.16-7.29 (m, 5H, Ar–<u>H</u>), 7.31-7.41 (m, 12H, Ar–<u>H</u>), 7.55-7.60 (m, 4H, Ar–<u>H</u>), 9.25 (t, 1H, N-<u>H</u>, *J* = 5.7 Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 46.4 (<u>C</u>H₂), 112.1, 114.9, 118.1, 120.9, 123.6, 126.8, 127.3, 127.8, 128.1, 128.4, 128.4, 128.6, 128.7, 129.1, 131.1, 132.2, 133.1, 134.4, 136.2, 138.1, 139.7, 140.0 (><u>C</u>–N<), 149.8 (><u>C</u>=N–),151.6 (><u>C</u>–NH–), 190.5 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₅H₂₆ClN₃O+ H]⁺: 540.18507, found: 540.18457.

f) 5-(2-benzylaminobenzoyl)-1,3-diphenyl-4-(p-tolyl)-1H-pyrazole (5d)

Yield (76 %); m.p.: 152-154 °C; FT-IR (v_{max} , cm⁻¹): 3300 (N-H), 3061 and 3028 (C-H aromatic), 2917 and 2859 (C-H aliphatic), 1617 (>C=O), 1573 (>C=N, pyrazole ring), 1519 and 1496 (>C=C<, aromatic ring), 1428 (C-N<); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.31 (s, 3H, $-C\underline{H}_3$), 4.51 (d, 2H, $-C\underline{H}_2$ –, J = 6 Hz), 6.34-6.35 (m, 1H, Ar– \underline{H}), 6.55 (d, 1H, Ar– \underline{H} , J = 8.4 Hz), 6.80-6.90 (m, 2H, Ar– \underline{H}), 7.02-7.08 (m, 2H, Ar– \underline{H}), 7.12-7.15 (m, 3H, Ar– \underline{H}), 7.20-7.29 (m, 2H, Ar– \underline{H}), 7.30-7.39 (m, 5H, Ar– \underline{H}), 7.54-7.62 (m, 6H, Ar– \underline{H}), 9.24 (t, 1H, N- \underline{H} , J = 5.7 Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 21.2 (\underline{C} H₃), 46.3 (\underline{C} H₂), 111.8, 114.8, 118.3, 122.2, 123.6, 126.8, 127.2, 127.6, 127.8, 128.1, 128.2, 128.4, 128.6, 129.0, 129.1, 129.6, 132.6, 134.6, 135.9, 136.5, 136.7, 138.2, 139.9 (> \underline{C} –N<), 149.8 (> \underline{C} =N–), 151.4 (> \underline{C} –NH–), 190.9 (> \underline{C} =O); ESI-QTOF-MS (m/z): mass calculated for [C₃₆H₂₉N₃O+H]⁺: 520.23963, found: 520.23941.

g) 5-(2-allylaminobenzoyl)-1,3,4-triphenyl-1H-pyrazole 6a

Yield (66 %); m.p.: 148-150 °C; FT-IR (v_{max} , cm⁻¹): 3292 (N-H), 3061 and 3026 (=CH vinylic and C-H aromatic), 2985, 2913 and 2854 (C-H aliphatic), 1616 (>C=O), 1568 (>C=N, pyrazole ring), 1515 and 1497 (>C=C<, aromatic ring), 1429 (C-N<); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 3.89-3.94 (m, 2H, $-C\underline{H}_{2}$ -), 5.18-5.25 (m, 2H, =C \underline{H}_{2} allylic), 5.89-5.99 (m, 1H, $-C\underline{H}_{2}$ allylic), 6.31-6.36 (m, 1H, Ar– \underline{H}), 6.58 (d, 1H, Ar– \underline{H} , J = 8.4 Hz), 7.18-7.39 (m, 13H, Ar– \underline{H}), 7.53-7.60 (m, 4H, Ar– \underline{H}), 8.96 (t, 1H, N- \underline{H} , J = 5.7 Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 44.7 ($-\underline{C}H_{2}$ -), 111.7, 114.5, 116.1 (= $\underline{C}H_{2}$ allylic), 117.9, 123.6, 127.1, 127.8, 127.9, 128.3, 128.4, 128.6, 129.1, 129.9, 131.8, 132.5, 133.8, 134.6, 135.9 ($-\underline{C}H$ = allylic), 138.1, 139.8, 139.9 (> \underline{C} –N<), 149.8 (> \underline{C} =N-),151.6 (> \underline{C} –NH–), 190.6 (> \underline{C} =O); ESI-QTOF-MS (m/z): mass calculated for [C₃₁H₂₅N₃O+ H]⁺: 456.20782, found: 456.20812.

h) 5-(2-allylaminobenzoyl)-4-(4-methoxyphenyl)-1,3-diphenyl-1H-pyrazole 6b

Yield (73 %); m.p.: 146-148 °C; FT-IR (ν_{max} , cm⁻¹): 3346 (N-H), 3060 and 3026 (=CH vinylic and C-H aromatic), 2985, 2954 and 2835 (C-H aliphatic), 1614 (>C=O), 1567 (>C=N, pyrazole ring), 1497 (>C=C<, aromatic ring), 1424 (C-N<), 1242 (C-O); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 3.77 (s, 3H, $-OC\underline{H}_3$), 3.89-3.93 (m, 2H, $-C\underline{H}_2$ -), 5.17-5.26 (m, 2H, $=C\underline{H}_2$ allylic), 5.87-5.99 (m, 1H, $-C\underline{H}$ = allylic), 6.31-6.37 (m, 1H, Ar– \underline{H}), 6.59 (d, 1H, Ar– \underline{H} , J = 8.4 Hz), 6.74-6.78 (m, 2H, Ar– \underline{H}), 7.13-7.38 (m, 10H, Ar– \underline{H}), 7.52-7.61 (m, 4H, Ar– \underline{H}), 8.96 (t, 1H, N- \underline{H} , J = 5.7 Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 44.7 ($-\underline{C}H_2$ -), 55.1 ($-O\underline{C}H_3$), 111.7, 113.8, 114.5, 116.1 (= $\underline{C}H_2$ allylic), 117.9, 121.1, 121.8, 123.5, 124.0, 127.5, 127.8, 128.2, 128.4, 128.6, 129.1, 131.0, 132.6, 133.8, 134.6, 135.9 ($-\underline{C}H$ = allylic), 139.8, 139.8 (> \underline{C} -N<), 149.8 (> \underline{C} =N-),151.6 (> \underline{C} -NH-),158.6 (> \underline{C} -OCH₃), 190.8 (> \underline{C} =O); ESI-QTOF-MS (m/z): mass calculated for [C₃₂H₂₇N₃O₂+H]⁺: 486.21761, found: 486.21814.

i) 5-(2-allylaminobenzoyl)-4-(4-chlorophenyl)-1,3-diphenyl-1H-pyrazole 6c

Yield (69 %); m.p.: 130-132 °C; FT-IR (v_{max} , cm⁻¹): 3352 (N-H), 3081, 3062 and 3015 (=CH vinylic and C-H aromatic), 2982, 2983 and 2839 (C-H aliphatic), 1613 (>C=O), 1566 (>C=N, pyrazole ring), 1496 (>C=C<, aromatic ring), 1421 (C-N<), 726 (C-Cl); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 3.90-3.95 (m, 2H, $-C\underline{H}_2$ -), 5.19-5.27 (m, 2H, $=C\underline{H}_2$ allylic), 5.87-6.00 (m, 1H, $-C\underline{H}$ = allylic), 6.31-6.36 (m, 1H, Ar– \underline{H}), 6.61 (d, 1H, Ar– \underline{H} , J = 8.7 Hz), 7.14-7.39 (m, 12H, Ar– \underline{H}), 7.52-7.57 (m, 4H, Ar– \underline{H}), 8.96 (t, 1H, N- \underline{H} , J = 5.7 Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 44.7 ($-\underline{C}H_2$ -), 111.8, 114.6, 116.2 (= $\underline{C}H_2$ allylic), 117.7, 120.8, 123.6, 127.7, 128.1, 128.4, 128.6, 129.1, 130.4, 131.1, 132.2, 133.1, 133.7, 134.4, 136.2 (- \underline{C} H= allylic), 139.7, 140.0 (> \underline{C} –N<), 149.8 (> \underline{C} =N–),151.7 (> \underline{C} –NH–), 190.3 (> \underline{C} =O); ESI-QTOF-MS (m/z): mass calculated for [C₃₁H₂₄ClN₃O+ H]⁺: 490.16939, found: 490.16973.

j) 5-(2-propargylaminobenzoyl)-1,3,4-triphenyl-1H-pyrazole 7a

Yield (57 %); m.p.: 178-180 °C; FT-IR (ν_{max} , cm⁻¹): 3329 (N-H), 3282 (=CH propargylic), 3060 (C-H aromatic), 2910 and 2853 (C-H aliphatic), 1616 (>C=O), 1562 (>C=N, pyrazole ring), 1496 (>C=C<, aromatic ring), 1426 (C-N<); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.26 (t, 1H, -C=C<u>H</u>, *J* = 2.4Hz), 4.04 (dd, 2H, -C<u>H</u>₂-, *J* = 2.4, 5.7Hz), 6.38-6.44 (m, 1H, Ar-<u>H</u>), 6.72 (d, 1H, Ar-<u>H</u>, *J* = 8.1Hz), 7.21-7.41 (m, 13H, Ar-<u>H</u>), 7.50-7.59 (m, 4H, Ar-<u>H</u>), 8.85 (t, 1H, N-<u>H</u>, *J* = 5.7Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 32.2 (-<u>C</u>H₂-), 71.5 (-C=<u>C</u>H), 79.7 (-<u>C</u>=CH), 111.5, 115.5, 118.6, 122.4, 123.7, 127.1, 127.7, 127.9, 128.2, 128.3, 128.4, 129.1, 129.9, 130.8, 131.7, 132.4, 134.6, 136.0, 139.7, 139.7 (><u>C</u>-N<), 149.8 (><u>C</u>=N-

),150.5 (><u>C</u>-NH-), 190.8 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₁H₂₃N₃O+ H]⁺: 454.19237, found: 454.19251.

k) 4-(4-methoxyphenyl)-1,3-diphenyl-5-(2-propargylaminobenzoyl)- 1H-pyrazole 7b

Yield (68 %); m.p.: 170-172 °C; FT-IR (υ_{max} , cm⁻¹): 3323 (N-H), 3247 (=CH propargylic), 3042 (C-H aromatic), 2956, 2914 and 2834 (C-H aliphatic), 1617 (>C=O), 1566 (>C=N, pyrazole ring), 1496 (>C=C<, aromatic ring), 1427 (C-N<), 1245 (C-O); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.26 (t, 1H, -C=C<u>H</u>, *J* = 2.4Hz), 3.76 (s, 3H, -OC<u>H</u>₃), 4.04 (dd, 2H, -C<u>H</u>₂-, *J* = 2.4, 5.7Hz), 6.04-6.45 (m, 1H, Ar-<u>H</u>), 6.71-6.78 (m, 3H, Ar-<u>H</u>), 7.12-7.16 (m, 2H, Ar-<u>H</u>), 7.25-7.41 (m, 8H, Ar-<u>H</u>), 7.51-7.57 (m, 2H, Ar-<u>H</u>), 7.58-7.61 (m, 2H, Ar-<u>H</u>), 8.86 (t, 1H, N-<u>H</u>, *J* = 5.7Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 32.2 (-<u>C</u>H₂-), 55.1 (-O<u>C</u>H₃), 71.5 (-C=<u>C</u>H), 79.7 (-<u>C</u>=CH), 111.6, 113.8, 115.5, 118.6, 122.1, 123.6, 123.9, 127.6, 127.7, 127.8, 128.2, 128.4, 129.1, 131.0, 132.6, 134.7, 136.0, 139.8(><u>C</u>-N<), 149.8 (><u>C</u>=N-), 150.5 (><u>C</u>-NH-), 158.7 (><u>C</u>-OCH₃), 190.0 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₂H₂₅N₃O₂+ H]⁺: 484.20195, found: 484.20220.

l) 5-(2-methylaminobenzoyl)-1,3,4-triphenyl-1H-pyrazole (8a)

Yield (83 %); m.p.: 200-202 °C; FT-IR (v_{max} , cm⁻¹): 3316 (N-H), 3051 (C-H aromatic), 2984, 2900, 2868 and 2817 (C-H aliphatic), 1618 (>C=O), 1569 (>C=N, pyrazole ring), 1522 and 1499 (>C=C<, aromatic ring), 1424 (C-N<); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.92 (d, 3H, -C<u>H</u>3, *J* = 5.1 Hz), 6.30-6.35 (m, 1H, Ar–<u>H</u>), 6.60 (d, 1H, Ar–<u>H</u>, *J* = 8.4 Hz), 7.20-7.39 (m, 13H, Ar–<u>H</u>), 7.53-7.55 (m, 4H, Ar–<u>H</u>), 8.81 (q, 1H, N–H, , *J* = 4.8 Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 29.3(<u>C</u>H₃), 110.9, 114.2, 117.5, 123.7, 127.1, 127.6, 127.9, 128.3, 128.5, 129.1, 129.9, 131.8, 132.5, 134.7, 136.1, 139.8, 139.9 (><u>C</u>–N<), 149.8 (><u>C</u>=N–), 152.7 (><u>C</u>–NH–), 190.4 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₂₉H₂₃N₃O+ H]⁺: 430.19312, found: 430.19316.

m)4-(4-methoxyphenyl)-5-(2-methylaminobenzoyl)-1,3-diphenyl-1H-pyrazole (8b)

Yield (89 %); m.p.: 176-178 °C; FT-IR (v_{max} , cm⁻¹): 3309 (N-H), 3052, 3005 (C-H aromatic), 2933, 2905 and 2834 (C-H aliphatic), 1617 (>C=O), 1570 (>C=N, pyrazole ring), 1519 and 1497 (>C=C<, aromatic ring), 1427 (C-N<), 1286 (C-O); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.92 (d, 3H, $-CH_3$, J = 5.1Hz), 3.77 (s, 3H, OCH₃), 6.34-6.37 (m, 1H, Ar–H), 6.61 (d, 1H, Ar–H, J = 8.4 Hz), 6.76-6.79 (m, 2H, Ar–H), 7.12-7.16 (m, 2H, Ar–H), 7.27-7.38 (m, 8H, Ar–H), 7.51-7.55 (m, 4H, Ar–H), 8.80 (q, 1H, N–H, J = 5.4Hz); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm):

29.2 (<u>CH</u>₃), 55.1 (–O<u>C</u>H₃), 110.9, 113.9, 114.2, 117.5, 123.5, 123.7, 127.6, 128.2, 128.5, 129.1, 129.6, 131.0, 131.2, 133.7, 134.6, 136.2, 139.8, 140.0 (><u>C</u>–N<), 148.7 (><u>C</u>=N–), 152.7 (><u>C</u>–NH–),158.8 (><u>C</u>–OCH₃), 190.4 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for $[C_{30}H_{25}N_3O_2 + H]^+$: 460.20398, found: 460.20405.

n) 4-(4-chlorophenyl)-5-(2-methylaminobenzoyl)-1,3-diphenyl-1H-pyrazole (8c)

Yield (76 %); m.p.: 174-176 °C; FT-IR (υ_{max} , cm⁻¹): 3350 (N-H), 3073, 3056, 3027 (C-H aromatic), 2920, 2906 and 2881 (C-H aliphatic), 1619 (>C=O), 1566 (>C=N, pyrazole ring), 1518 and 1497 (>C=C<, aromatic ring), 1424 (C-N<), 725 (C-Cl); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.93 (d, 3H, -C<u>H</u>₃, *J* = 5.1Hz), 6.32-6.37 (m, 1H, Ar-<u>H</u>), 6.63 (d, 1H, Ar-<u>H</u>, *J* = 8.4 Hz), 7.14-7.21 (m, 4H, Ar-<u>H</u>), 7.25-7.39 (m, 7H, Ar-<u>H</u>), 7.53-7.58 (m, 4H, Ar-<u>H</u>), 8.81 (q, 1H, N-H, , *J* = 5.7Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 29.3 (<u>C</u>H₃), 111.1, 114.3, 117.4, 120.7, 123.6, 127.7, 128.1, 128.4, 128.4, 128.6, 129.1, 130.4, 131.1, 132.3, 133.1, 134.5, 136.3, 139.7, 140.0 (><u>C</u>-N<), 149.8 (><u>C</u>=N-), 152.8 (><u>C</u>-NH-),190.1 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₂₉H₂₂ClN₃O+ H]⁺: 464.15393, found: 464.15401.

o) 5-(2-methylaminobenzoyl)-1,3-diphenyl-4-(p-tolyl)-1H-pyrazole (8d)

Yield (91 %); m.p.: 172-174 °C; FT-IR (υ_{max} , cm⁻¹): 3318 (N-H), 3058, 3023 (C-H aromatic), 2977, 2918, 2868 and 2816 (C-H aliphatic), 1618 (>C=O), 1568 (>C=N, pyrazole ring), 1518 and 1498 (>C=C<, aromatic ring), 1423 (C-N<); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.29 (s, 3H, -C<u>H</u>₃), 2.92 (d, 3H, -C<u>H</u>₃, *J* = 5.1Hz), 6.31-6.37 (m, 1H, Ar-<u>H</u>), 6.61 (d, 1H, Ar-<u>H</u>, *J* = 8.4 Hz), 7.02 (d, 2H, Ar-<u>H</u>, *J* = 7.8 Hz), 7.12 (d, 2H, Ar-<u>H</u>, *J* = 8.1 Hz), 7.23-7.38 (m, 8H, Ar-<u>H</u>), 7.52-7.61 (m, 4H, Ar-<u>H</u>), 8.82 (q, 1H, N-H, *J* = 6Hz, exchangeable with D₂O); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 21.2 (<u>C</u>H₃), 29.3 (<u>C</u>H₃), 110.9, 114.2, 117.6, 122.0, 123.6, 127.5, 127.8, 128.2, 128.4, 128.7, 129.0, 129.1, 129.7, 132.7, 134.7, 136.1, 136.7, 139.8, 139.9 (><u>C</u>-N<), 149.9 (><u>C</u>=N-), 152.7 (><u>C</u>-NH-),190.6 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₀H₂₅N₃O+H]⁺: 444.20926, found: 444.20927.

p) 5-(2-dimethylaminobenzoyl)-1,3,4-triphenyl-1H-pyrazole (9a)

Yield (55 %); m.p.: 180-182 °C; FT-IR (υ_{max}, cm⁻1): 3057 (C-H aromatic), 2995, 2926, 2880 and 2808 (C-H aliphatic), 1624 (>C=O), 1596 (>C=N, pyrazole ring), 1544 and 1496 (>C=C<, aromatic ring), 1409 (C-N<); ¹H NMR (300 MHz, CDCl₃) (δ/ppm): 2.67 (s, 6H, C<u>H</u>₃), 6.66-6.74 (m, 2H, Ar–<u>H</u>), 7.18-7.37 (m, 12H, Ar–<u>H</u>), 7.49-7.59 (m, 5H, Ar–<u>H</u>); ¹³C NMR (75 MHz, CDCl₃) (δ/ppm): 43.9 (2 <u>C</u>H₃), 116.3, 118.1, 123.3, 124.8, 126.8, 127.3, 127.7, 127.8, 127.9,

128.1, 128.2, 128.7, 130.7, 132.0, 132.5, 133.5,133.9, 139.8, 140.5 (><u>C</u>-N<), 149.8 (><u>C</u>=N–), 152.4 (><u>C</u>-N(CH₃)₂),186.7 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₀H₂₅N₃O+H]⁺: 4744.20704, found: 444.20696.

q) 4-(4-methoxyphenyl)-5-(2-dimethylaminobenzoyl)-1,3-diphenyl-1H-pyrazole (9b)

Yield (67 %); m.p.: 134-136 °C; FT-IR (υ_{max} , cm⁻¹): 3062, 3000 (C-H aromatic), 2961 and 2836 (C-H aliphatic), 1629 (>C=O), 1597 (>C=N, pyrazole ring), 1544 and 1497 (>C=C<, aromatic ring), 1420 (C-N<), 1243 (C-O); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.67 (s, 6H, -C<u>H</u>₃),3.78 (s, 3H, -OC<u>H</u>₃), 6.67-6.77 (m, 4H, Ar-<u>H</u>), 7.15-7.24 (m, 2H, Ar-<u>H</u>), 7.26-7.35 (m, 7H, Ar-<u>H</u>), 7.46-7.58 (m, 5H, Ar-<u>H</u>); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 44.0 (2 -<u>C</u>H₃), 55.1 (-O-<u>C</u>H₃), 113.4, 116.3, 118.2, 124.8, 127.7, 127.7, 128.1, 128.2, 128.7, 131.9, 133.4, 133.8, 140.0, 140.5 (><u>C</u>-N<), 149.9 (><u>C</u>=N-), 152.4 (><u>C</u>-N(CH₃)₂), 158.7 (><u>C</u>-OCH₃), 186.9 (><u>C</u>=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₁H₂₇N₃O₂+ H]⁺:474.21868, found: 474.21889.

r) 4-(4-chlorophenyl)-5-(2-dimethylaminobenzoyl)-1,3-diphenyl-1H-pyrazole (9c)

Yield (59 %); m.p.: 164-166 °C; FT-IR (υ_{max} , cm⁻¹): 3062 (C-H aromatic), 2960, 2925 and 2810 (C-H aliphatic), 1626 (>C=O), 1595 (>C=N, pyrazole ring), 1544 and 1497 (>C=C<, aromatic ring), 1414 (C-N<), 729 (C-Cl); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.67 (s, 6H, – C**H**₃), 6.67-6.76 (m, 2H, Ar–**H**), 7.20-7.24 (m, 4H, Ar–**H**), 7.25-7.34 (m, 1H, Ar–**H**), 7.36-7.37 (m, 6H, Ar–**H**), 7.48-7.53 (m, 5H, Ar–**H**); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 44.1_(2 –**C**H₃), 116.5, 118.5, 122.1, 124.9, 126.9, 128.0, 128.0, 128.2, 128.3, 128.7, 130.6, 132.0, 132.2, 133.3,133.6, 133.6, 139.8, 140.5 (>**C**–N<), 149.8 (>**C**=N–), 152.5 (>**C**–N(CH₃)₂), 186.5 (>**C**=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₀H₂₄ClN₃O+ H]⁺: 478.16992, found: 478.17013.

s) 5-(2-dimethylaminobenzoyl)-1,3-diphenyl-4-(p-tolyl)-1H-pyrazole (9d)

Yield (67 %); m.p.: 158-160 °C; FT-IR (v_{max} , cm⁻¹): 3060 (C-H aromatic), 2923 and 2808 (C-H aliphatic), 1625 (>C=O), 1595 (>C=N, pyrazole ring), 1545 and 1496 (>C=C<, aromatic ring), 1419 (C-N<); ¹H NMR (300 MHz, CDCl₃) (δ /ppm): 2.3 (s, 3H, -C**H**₃),2.68 (s, 6H, -C**H**₃), 6.67-6.74 (m, 2H, Ar-**H**), 7.01 (d, 2H, Ar-**H**, *J* = 7.8Hz), 7.12-7.15 (m, 2H, Ar-**H**), 7.21-7.34 (m, 7H, Ar-**H**), 7.47-7.59 (m, 5H, Ar-**H**); ¹³C NMR (75 MHz, CDCl₃) (δ /ppm): 21.2 (-CH₃), 44.0_(2 -**C**H₃), 116.2, 118.1, 123.4, 124.8, 126.8, 127.7, 127.7, 128.1, 128.1, 128.7, 128.9, 130.5, 132.6, 133.4, 134.0, 136.9, 139.9, 140.5 (>**C**-N<), 149.8 (>**C**=N-), 152.4 (>**C**-N(CH₃)₂), 186.8 (>**C**=O); ESI-QTOF-MS (m/z): mass calculated for [C₃₁H₂₇N₃O₂+ H]⁺: 458.22451, found: 458.22503.

3. Antimicrobial Activity

The antimicrobial activity of the synthesized compounds was studied against *Listeria innocua CECT 4030, Staphylococcus aureus CECT 976, Escherichia coli K12* as positive and negative bacterial strains. *Candida albicans* ATCC 10231 was used to evaluate the antifungal activity ^{S1}. The fungi strain was cultured in malt extract (15g in 1liter) ^{S2}, and the used bacterial strains were cultivated in Luria-Bertani (LB) medium (10g Tryptone, 5g Yeast extract, 10g NaCl in 1liter). The fungi strain and all pathogens bacteria were incubated at 37°C for 48h.

The tested compounds were dissolved in the dimethyl sulfoxide (DMSO) and mixed with sterile LB medium. The *in vitro* screening of the compounds against bacterial and fungi strains was carried out using the broth microdilution method in 96-well plates, according to the previously described methods ^{S3,S4}, and following guidelines of the Clinical and Laboratory Standards Institute (CLSI, approved Standard M7-A8 and M27-A3)^{S5,S6}. From a stock solution of the tested compounds and reference drugs dissolved in DMSO, the required concentrations of 2000, 1000, 500, 250, 125, 62.5, 31.25, 15.62, 7.81 and 3.90 µg/mL were prepared by the successive dilution ¹/₂. Each well was inoculated by 100µL of Luria Bertani medium liquid culture medium (LB) for bacteria and Malt Extract (ME) liquid culture medium for fungi, more than 50µL of the tested compounds; every well was then inoculated with 50µL of the microbial concentration. Negative controls (bacteria and fungi without drugs) and positive controls (fungi and bacteria plus a serially diluted antibiotic) were included on every plate. The fluconazole and Streptomycin were used as positives controls for fungi and bacteria, respectively. After incubation at appropriate temperature and period, the activity assay and viability of microbial cell were evaluated with 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) indicator (0.04 mg/mL), 10µL of TTC was added to each well. Results were recorded visually in terms of Minimum inhibitory concentration (MIC, µmol/mL). The Minimum Inhibitory Concentration (MIC) was the lowest concentration of synthesized compounds that completely inhibit microbial strains.

The minimum fungicidal concentrations (MFCs) and the minimum bactericidal concentrations (MBCs) was determined by sub-culturing negative wells that showed no microbial growth. Bacterial strains were subculture onto the surface of LB agar medium and fungal strain on EM agar medium. The MFC and MBC were defined as the lowest concentrations of compounds resulting no microbial growth of strains on the LB and EM agar media^{S7}.

4. FT-IR, ¹H, ¹³C NMR and HRMS spectra of synthesized compounds

a) 5-(2-ethylaminobenzoyl)-1,3,4-triphenyl-1H pyrazole (4a)

Figure S5. IR spectrum of compound (4a)

Figure S7. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (4a)

Figure S8. Mass spectrum of compound (4a)

b) 5-(2-ethylaminobenzoyl)-4-(4-methoxyphenyl)-1,3-diphenyl-1H-pyrazole (4b)

Figure S9. IR spectrum of compound (4b)

Figure S11. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (4b)

Figure S12. Mass spectrum of compound (4b)

Figure S15. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (5a)

Figure S16. Mass spectrum of compound (5a)

d) 5-(2-benzylaminobenzoyl)-4-(4-methoxyphenyl)-1,3-diphenyl-1H-pyrazole (5b)

Figure S17. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (**5b**)

Figure S18. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (5b)

Figure S 19. Mass spectrum of compound (5b)

e) 5-(2-benzylaminobenzoyl)-4-(4-chlorophenyl)-1,3-diphenyl-1H-pyrazole (5c)

Figure S21. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (5c)

Figure S23. Mass spectrum of compound (5c)

f) 5-(2-benzylaminobenzoyl)-1,3-diphenyl-4-(p-tolyl)-1H-pyrazole (5d)

Figure S25. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (**5d**)

Figure S27. Mass spectrum of compound (5d)

g) 5-(2-allylaminobenzoyl)-1,3,4-triphenyl-1H-pyrazole 6a

Figure S29. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (6a)

Figure S30. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (6a)

Figure S31. 2D-NMR spectrum of compound (6a)

Figure S32. 2D-NMR spectrum of compound (6a)

Figure S 33. Mass spectrum of compound (6a)

h) 5-(2-allylaminobenzoyl)-4-(4-methoxyphenyl)-1,3-diphenyl-1H-pyrazole (6b)

Figure S35. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (**6b**)

Figure S37. Mass spectrum of compound (6b)

i) 5-(2-allylaminobenzoyl)-4-(4-chlorophenyl)-1,3-diphenyl-1H-pyrazole (6c)

Figure S39. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (6c)

Figure S41. Mass spectrum of compound (6c)

j) 5-(2-propargylaminobenzoyl)-1,3,4-triphenyl-1H-pyrazole (7a)

Figure S45. 2D-NMR spectrum of compound (7a)

Figure S47. Mass spectrum of compound (7a)

 $k) \quad \ \ 4-(4-methoxyphenyl)-5-(2-propargylaminobenzoyl)-1, 3-diphenyl-1H-pyrazole\ (7b)$

Figure S49. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (7b)

Figure S50. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (7b)

Figure S51. Mass spectrum of compound (7b)

l) 5-(2-methylaminobenzoyl)-1,3,4-triphenyl-1H-pyrazole (8a)

Figure S53. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (8a)

Figure S54. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (8a)

Figure S55. Mass spectrum of compound (8a)

m) 4-(4-methoxyphenyl)-5-(2-methylaminobenzoyl)-1,3-diphenyl-1H-pyrazole (8b)

Figure S57. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (**8b**)

Figure S59. Mass spectrum of compound (8b)

n) 4-(4-chlorophenyl)-5-(2-methylaminobenzoyl)-1,3-diphenyl-1H-pyrazole (8c)

Figure S61. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (8c)

Figure S62. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (8c)

Figure S63. Mass spectrum of compound (8c)

o) 5-(2-methylaminobenzoyl)-1,3-diphenyl-4-(p-tolyl)-1H-pyrazole (8d)

Figure S65. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (8d)

Figure S66. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (8d)

Figure S67. Mass spectrum of compound (8d)

p) 5-(2-dimethylaminobenzoyl)-1,3,4-triphenyl-1H-pyrazole (9a)

Figure S69. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (9a)

Figure S71. Mass spectrum of compound (9a)

q) 4-(4-methoxyphenyl)-5-(2-dimethylaminobenzoyl)-1,3-diphenyl-1H-pyrazole (9b)

Figure S73. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (9b)

r) 4-(4-chlorophenyl)-5-(2-dimethylaminobenzoyl)-1,3-diphenyl-1H-pyrazole (9c)

Figure S77. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (9c)

Figure S78. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (9c)

Figure S79. Mass spectrum of compound (9c)

s) 5-(2-dimethylaminobenzoyl)-1,3-diphenyl-4-(p-tolyl)-1H-pyrazole (9d)

Figure S80. IR spectrum of compound (9d)

Figure S81. ¹H NMR spectrum (300 MHz, CDCl₃) of compound (9d)

Figure S82. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound (9d)

5. References (cited in SI):

- S1 T. Benali, K. Habbadi, A. Khabbach, I. Marmouzi, G. Zengin, A. Bouyahya, I. Chamkhi, H. Chtibi, T. Aanniz, E. H. Achbani and K. Hammani, *Foods*, 2020, **9**, 668.
- S2 F. Moussaid, A. E. L. Barnossi, N. Chahmi and A. Iraqi Housseini, *Mater. Today Proc.*, 2019, **13**, 1049–1054.
- S3 S. D. Sarker, L. Nahar and Y. Kumarasamy, *Methods*, 2007, 42, 321–324.
- S4 S. Shahavar Sulthana, S. Arul Antony, C. Balachandran and S. Syed Shafi, *Bioorganic Med. Chem. Lett.*, 2015, **25**, 2753–2757.
- S5 Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard Third Edition. CLSI document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institue, 2008.
- S6 Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute, 2012.
- S7 F. Moussaid, Y. El Atki, A. E. L. Barnossi and A. Abdellaoui, *J. Pharm. Sci. Res.*, 2019, 11, 718–720.