Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Fabrication of high-efficiency CdS@TiO₂@C/Ti₃C₂ composites photocatalyst for the degradation of TC-HCl under visible light

Juanjuan Ren,^a Lili Wang,^a Qianqian Gong,^b Jingyue Xuan,^b Meiling Sun,^b Qi Zhang,^b Haifeng Zhang,^b Guangchao Yin^{*b} and Bo Liu^{*ab}

^a School of Material Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China.

^b Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China.

*Corresponding author. Fax: +86 533 2783909

E-mail address: yingc@sdut.edu.cn (G. C. Yin), liub@sdut.edu.cn (B. Liu).

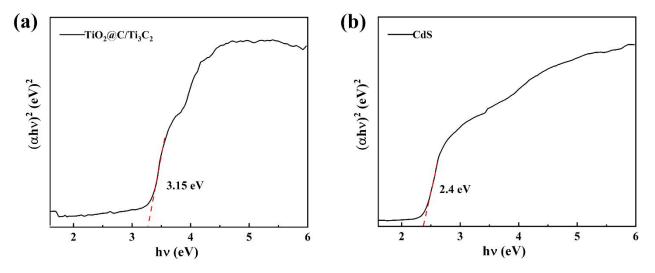


Fig. S1 Band gaps of C@T@CT-2 and CdS samples.

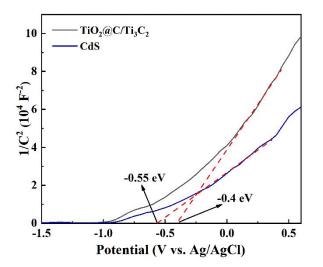


Fig. S2 Mott-Schottky curves of TiO₂@C/Ti₃C₂ and CdS samples.

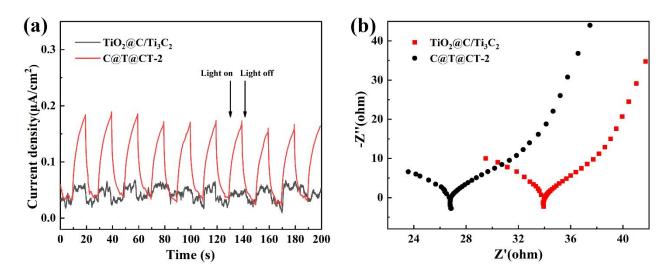


Fig. S3 Transient photocurrent responses (a) and EIS curves (b) of TiO₂@C/Ti₃C₂ and C@T@CT-2 samples.

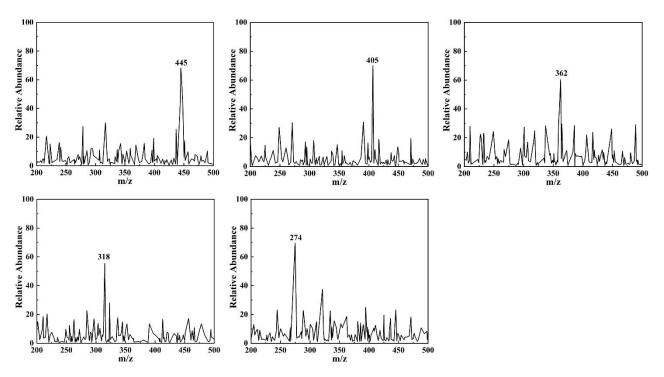


Fig. S4 Principal by-products of TC-HCl degradation detected by LC-MS.

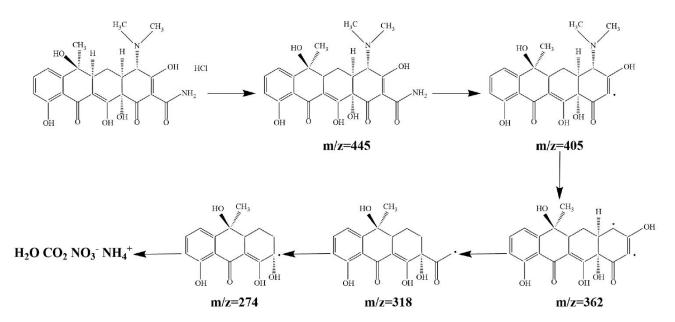


Fig. S5 The proposed photodegradation pathways of TC-HCl by CdS@TiO₂@C/Ti₃C₂.

The possible degradation pathway of TC-HCl was as follows: $m/z = 445 \rightarrow m/z = 405$ (by loss of $-CONH_2$) $\rightarrow m/z = 362$ (by loss of $-N(CH_3)_2$) $\rightarrow m/z = 318$ (by loss of $-CH_2C(OH)$) $\rightarrow m/z = 274$ (then by loss of $-COCH_2$).