Supporting Information

Neutral Mo₆Q₈-clusters with terminal phosphine ligands – a route to water soluble molecular units of Chevrel phases

Evgeniya D. Novikova,^a Alena D. Gassan,^{a,b} Anton A. Ivanov,^a Yuri A. Vorotnikov,^a* Michael A. Shestopalov^a*

^aNikolaev Institute of Inorganic Chemistry SB RAS, 3 acad. Lavrentiev ave., 630090 Novosibirsk, Russia, Email: vorotnikov@niic.nsc.ru, shtopy@niic.nsc.ru

^bNovosibirsk State University, 2 Pirogova st., 630090 Novosibirsk, Russia.

$$Ph_{2}PC_{2}H_{4}COOH$$

$$Na + Q \xrightarrow{Dry DMF}_{130 \ °C} Na_{2}Q \xrightarrow{130 \ °C}_{4 \ days} [\{Mo_{6}Q_{8}\}(Ph_{2}PC_{2}H_{4}COOH)_{6}]$$

$$Q = S/Se$$

$$(Bu_{4}N)_{2}[\{Mo_{6}Cl_{8}\}Cl_{6}]$$

Figure S1. The schematic illustration of the synthesis of 1 and 2.

Solvent	1	2	sodium salt of 1	sodium salt of 2
DMF	+	+	-	-
DMSO	+	+	-	-
Acetone	-	-	-	-
Acetonitrile	-	-	-	-
Ethanol	+	+	-	-
Diethyl ether	-	-	-	-
Water	-	-	+	+

Table S1. List of solubility of 1 and 2 in common solvents.

Figure S2. ¹H NMR spectra of $Ph_2PC_2H_4COOH$ and sodium salts of **1** and **2**.

Parameter	1 ·4.5H ₂ O·2.5Et ₂ O	2 ·4.5H ₂ O·2.5Et ₂ O	
Empirical formula	C100H124M06O19P6S8	C100H124M06O10P6Seg	
Formula weight	2647.92	3023.12	
Crystal system	Triclinic	Triclinic	
Space group	P 1	P 1	
Z	1	1	
Т (К)	150(2)	150(2)	
a (Å)	14.2549(6)	14.3781(9)	
b (Å)	15.2377(5)	15.2185(9)	
<i>c</i> (Å)	17.0827(7)	17.2172(10)	
α (°)	98.206(2)	97.527(2)	
β (°)	108.992(2)	109.711(2)	
γ (°)	114.838(1)	114.890(2)	
V (Å)	3010.5(2)	3048.4(3)	
D _{calc} (g cm ⁻³)	1.461	1.647	
μ (mm⁻¹)	0.882	3.122	
Crystal size (mm)	$0.1 \times 0.08 \times 0.03$	$0.09 \times 0.09 \times 0.05$	
ϑ scan range (≌)	1.973 to 30.595	2.278 to 25.737	
	$-20 \le h \le 20$	$-17 \le h \le 17$	
Indices ranges	$-21 \le k \le 21$	$-18 \le k \le 18$	
	$-23 \le 1 \le 23$	$-20 \le I \le 20$	
Reflections collected	60018	47618	
Independent	172/11	1161/	
reflections	17241	11014	
Observed reflections	11944	6738	
[I > 2σ(I)]	11344	0730	
Parameters refined	748	746	
R _{int}	0.0450	0.1048	
Goodness-of-fit	1 027	0 948	
(GOF) on F ²	1.027	0.040	
R_1^a/wR_2^b [I > 2 σ (I)]	0.0460/0.1277	0.0551/0.1328	
R_1^a/wR_2^b (all data)	0.0757/0.1408	0.1159/0.1539	
Δρ _{max} /Δρ _{min} (ē·Å ⁻³)	1.345/-0.988	1.179/-1.936	

Table S2. Selected crystallographic parameters of the single-crystal X-ray diffraction structuralanalysis for 1 and 2

Figure S3. FTIR spectra of the pro-ligand and compounds 1 and 2.

Table S3. Main intracluste	r distances in 1 and 2 a	nd related compounds
----------------------------	--	----------------------

Mo–Mo, Å	Mo–Q, Å	Mo–P, Å
2.6540(4) -	2.4306(8) -	2.5444(9) –
2.6668(4)	2.4648(8)	2.5594(8)
2.6947(10) -	2.531(1) –	2.544(2) –
2.7049(9)	2.574(1)	2.560(2)
2.662 - 2.664	2.438 – 2.449	2.527
2.658 – 2.666	2.445 – 2.463	2.525 – 2.537
2.700 - 2.708	2.555 – 2.566	2.537 – 2.548
	Mo–Mo, Å 2.6540(4) – 2.6668(4) 2.6947(10) – 2.7049(9) 2.662 – 2.664 2.658 – 2.666 2.700 – 2.708	Mo-Mo, ÅMo-Q, Å2.6540(4) -2.4306(8) -2.6668(4)2.4648(8)2.6947(10) -2.531(1) -2.7049(9)2.574(1)2.662 - 2.6642.438 - 2.4492.658 - 2.6662.445 - 2.4632.700 - 2.7082.555 - 2.566

Figure S4. Cyclic voltammograms of **1** at various scan rate (a, b) and linear dependence of the anodic and cathodic peak current upon square root of the potential scan rate (c, d).

Figure S5. Cyclic voltammograms of **2** at various scan rate (a, b) and linear dependence of the anodic and cathodic peak current upon square root of the potential scan rate (c, d).

Figure S6. Absorption spectra of 1 and 2 in DMF.

Figure S7. Absorption spectra of sodium salt of **1** in water: fresh (black), aged for 10 days (red), and after addition of NaOH solution (blue).

Figure S8. Absorption spectra of sodium salt of **2** in water: fresh (black), aged for 10 days (red), and after addition of NaOH solution (blue).

Figure S9. Absorption spectra of sodium salt of 1 in water aged for 10 days at pH ~ 13.

Figure S10. Absorption spectra of sodium salt of 2 in water aged for 10 days at pH ~ 13.

References

- 1. T. Saito, N. Yamamoto, T. Yamagata and H. Imoto, *J. Am. Chem. Soc.*, 1988, **110**, 1646-1647. <u>https://doi.org/10.1021/ja00213a060</u>
- 2. T. Matsumoto, R. Namiki and H.-C. Chang, *Eur J Inorg Chem*, 2018, **2018**, 3900-3904. <u>https://doi.org/10.1002/ejic.201800587</u>
- 3. T. Saito, N. Yamamoto, T. Nagase, T. Tsuboi, K. Kobayashi, T. Yamagata, H. Imoto and K. Unoura, *Inorg. Chem.*, 1990, **29**, 764-770. <u>https://doi.org/10.1021/ic00329a039</u>