SUPPORTING INFORMATION

Facile synthesis of MnCo₂S₄ nanosheets as a binder-free electrode material for high performance supercapacitor applications

Ha M. Nguyet^{a,b}, Le T. T. Tam^{*a}, Doan T. Tung^{a,b}, Nguyen T. Yen^a, Hoang T. Dung^a, Ngo T. Dung^a, Phan N. Hong^c, Le A. Tuan^d, Phan N. Minh^b and Le T. Lu^{*a,b}

^a Institute for Tropical Technology-Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Vietnam.

^b Graduate University of Science and Technology-VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam.

^c Center for High Technology Development-VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam.

^d Phenikaa University, Nguyen Thanh Binh street, Yen Nghia Ward, Ha Dong district, Hanoi 12116, Vietnam.

*Corresponding authors: thanhtam.le95pt@gmail.com; ltlu@itt.vast.vn.

Fig. S1. BET surface area plot of MCS nanosheets.

Fig. S2. SEM images (a, b) and EDS spectrum of MCS electrode after 5000 cycles.

Table S1. Comparison of the electrochemical performance of the $MnCo_2S_4//MnCo_2S_4$ device with various supercapacitors from previous reports.

Supercapacitor	Electrolyte	Voltage (V)	Specific capacitance (Fg ⁻¹)	Energy density (Whkg ⁻¹)	Power density (Wkg ⁻¹)	Ref.
MnCo ₂ S ₄ //MnCo ₂ S ₄ SSC	6М КОН	1.7	239 Fg ⁻¹	96	1857	This work
MnCo ₂ S ₄ //MnCo ₂ S ₄ SSC	ЗМ КОН	1.8	59.7 mAhg ⁻¹	106.5	850	[S1]
MnCo ₂ S₄/HNTs// MnCo ₂ S₄/HNTs SSC	Polymer gel	0.8	76.12 Fg ⁻¹	6.98	1976	[S2]
MnCo ₂ S ₄ //AC ASC	ЗМ КОН	1.6	160 Fg ⁻¹	57	1000	[S3]
MnCo ₂ S ₄ //rGO	2М КОН	1.6	121 Fg ⁻¹	43	801	[S4]
CoMnS//AC ASC	2М КОН	1.6	241.62 Fg ⁻¹	85.91	800	[\$5]
CoMn ₂ O ₄ //CoMn ₂ O ₄ SSC	KOH/PVA gel	1	46.5 mAhg ⁻¹	23.29	500	[S6]
NiFe ₂ O ₄ //NiFe ₂ O ₄ SSC	KOH/PVA gel	1.2	236 Fg ⁻¹	47	333	[S7]
NiCo ₂ S ₄ /Co ₉ S ₈ //AC ASC	1М КОН	1.6	103.2 Fg ⁻¹	36.7	800	[S8]
CuCo ₂ S ₄ //AC ASC	ЗМ КОН	1.4	76.8 Fg ⁻¹	15	422.5	[\$9]
CuCo ₂ S ₄ //AC ASC	2М КОН	1.4	231 Fg ⁻¹	63.6	700	[S10]

Note: AC= active carbon, rGO = reduced graphene oxide, ASC=asymmetric supercapacitor, SSC=symmetric supercapacitor.

References

- [S1] A. Pramanik, S. Maiti, M. Sreemany and S. Mahanty, Electrochim. Acta, 2016, 213, 672-679.
- [S2] S. K. Shinde, G. S. Ghodake, N. C. Maile, H. M. Yadav, A. D. Jagadale, M. B. Jalak,
 A. A. Kadam, S. Ramesh, C. Bathula, D.-Y. Kim, Electrochim. Acta, 2020, 341, 135973.
- [S3] L. Abbasi, M. Arvand, S. E. Moosavifard, Carbon, 2020, **161**, 299-308.
- [S4] A. M. Elshahawy, X. Li, H. Zhang, Y. Hu, K. H. Ho, C. Guan,
 J. Mater. Chem. A, 2017, 5, 7494 7506.
- [S5] X. Hu, S. Liu, Y. Chen, J. Jiang, H. Cong, J. Tang, Y. Sun, S. Han and H. Lin, New J. Chem., 2020, 44, 11786-11795.
- [S6] T. Peng,X. Hou, C. Liu, Q. Yu, R. Luo, H. Yan, Y. Lu, X. Liu, Y. Luo, J. Solid State Electrochem., 2017, 21, 1579–1587.
- [S7] S. B. Bandgar, M. M. Vadiyar, Y.C. Ling, J. Chang, S.-H. Han, A. V. Ghule and S. S. Kolekar, ACS Appl. Energy Mater., 2018, 1, 638–648.
- [S8] Y. Shen, K. Zhang, B. Chen, F. Yang, K. Xu, X. Lu, Journal of Colloid and Interface Science, 2019, 557, 135-143.
- [S9] Y. Xu, T. Zhou, X. Cao, W. Zhao, J. Chang, W. Zhu, W. Guo, W. Du, Mater. Res.
 Bull., 2017, 91, 68–76.
- [S10] J. Jiang, Y. Chen, X. Hu, H. Cong, Q. Zhou, H. Rong, Y. Sun, S. Han, Vacuum, 2020, 182, 109698.