Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Non-Salen Coumarin Schiff Base Chiral Fluorescent Probe Turn on

Circularly Polarized Luminescence by Mg²⁺ and Zn²⁺

Fubin Fu, Xueyan Zhang, Shengquan Zhou, Wei Shi, Jiangmin Li, Jiajia Yu, Yanzhao

Rao, Lei Wu, Jing Cao*

College of Chemistry, Xiangtan University, Xiangtan City, Hunan Province, 411105, China

Email: caojing8088@xtu.edu.cn

Contents

Computational Studies.	S2
¹ H and ¹³ C Spectra of Compounds	S2-S6
LC-MS spectrum of the compound L	S6
photophysical properties of the probe	S7-S9
IR spectra and DFT Optimized structure calculated	S9
Chiral enantiomer recognition FL Spectra of L1 and L2	S10-S11

Computational Studies. The DFT calculations were performed by using the Gaussian 09 program4 at the B3LYP 6-311(g)level.

¹H and ¹³C Spectra of Compounds

Figure S1. ¹ H NMR spectrum of the compound 2a

Figure S3.¹ H NMR spectrum of the compound 3a

Figure S5 . ¹H NMR spectrum of the compound L1

Figure S7 . $^1\mathrm{H}$ NMR spectrum of the compound L2

Figure S8 . ¹³ C NMR spectrum of the compound L2

LC-MS spectrum of the compound L

Sample Spectra

Sample Spectra

Figure S10. LC-MS spectrum of the compound L2

Figure S11. Benesi-Hildebrand curve of the emission changes for the complexation(a) $L1/Zn^{2+}$, (b) $L1/Mg^{2+}$ and (c) $L2/Zn^{2+}$.

Table S1. The g_{abs} value of $L1/Zn^{2+}$, $L1/Mg^{2+}$			
Substance	Corresponding peak(nm)	g _{abs} value	
(S,S)-L1 (R,R)-L1	368	1.1129E-03 -1.1124E-03	
$(S,S)-L1/Zn^{2+}$ (R,R)-L1/Zn ²⁺	382	9.7168E-04 -9.4900E-04	
(S,S)-L1/Mg ²⁺ (R,R)-L1/Mg ²⁺	377	1.1810E-03 -1.2202E-03	
(S,S)-L2 (R,R)-L2	345	2.0230E-03 -2.1840E-03	
$(S,S)-L2/Zn^{2+}$ (R,R)-L2/Zn ²⁺	345	2.4360E-03 -2.4740E-03	

Table S1. The g_{abc} value of L1/Zn²⁺, L1/Mg²⁺

Figure S12. g_{lum} spectra of (a-d) (S,S)/(R,R)-L1/Mg²⁺ and (e-f) (S,S)/(R,R)-L1/Zn²⁺ at two order of magnitude concentration states of 10⁻⁵ and 10⁻⁴. "g" indicates concentration of 3x10⁻⁴ M, "d" indicates concentration of 2x10⁻⁵ M, Ex_(CPL)=318 nm .

Table S2.The g_{lum} value of $L1/Zn^{2+}\text{, }\ L1/Mg^{2+}$

Substance	the highest peak in synchronization (nm)	g _{lum} value
(a)g-(S,S)-L1/Mg ²⁺ (b)g-(R,R)-L1/Mg ²⁺	418	1.11356×10^{-4} -4.63661 × 10^{-4}
(c)d-(S,S)-L1/Mg ²⁺ (d)d-(R,R)-L1/Mg ²⁺	412	4.15585×10^{-4} -5.76653 $\times 10^{-4}$
(e)g-(S,S)-L1/Zn ²⁺ (f)g-(R,R)-L1/Zn ²⁺	422	6.88723×10 ⁻⁴ -2.59214×10 ⁻⁴
$d-(S,S)-L1/Zn^{2+}$ (g)d-(R,R)-L1/Zn^{2+}	416	-5.9874×10-4

IR spectra and DFT Optimized structure calculated

Figure S13. (a) optimized structure calculated at the DFT-B3LYP 6-311g for L1/Zn²⁺ (left)and L1/Mg²⁺(right);
(b) IR spectra of L1, L1/Zn²⁺ and L1/Mg²⁺.

Chiral enantiomer recognition FL Spectra of L1 and L2

Figure S14. Fluorescence emission spectra of seven chiral enantiomers added to the probe L1 separately (λ ex=365nm, λ em=408 nm; Slit width: EX=5 nm, EM=5 nm). (a): (D)- and (L)-tryptophan; (b): (D)- and (L)-tartaric acid; (c): (D)- and (L)-malic acid; (d): (D)- and (L)-proline; (e): (D)- and (L)-pyroglutamic acid.

Figure S15. Fluorescence emission spectra of seven chiral enantiomers added to the probe L2 separately (λ ex=365nm, λ em=408 nm; Slit width: EX=5 nm, EM=5 nm). (a): (D)-and (L)-camphorsulfonic acid; (b): (D)- and (L)-tryptophan; (c): (D)- and (L)-tartaric acid; (d): (D)- and (L)-malic acid; (e): (D)- and (L)-proline; (f): (D)- and (L)-pyroglutamic acid; (g): (D) - and (L)-mandelic acid.