A novel triruthenium nitrosyl bearing a quinolinic ligand: a comparison of its spectroscopic behavior with its pyridine analogues

Nicolle Azevedo Portela dos Santos, ${ }^{\text {a }}$ Amanda Batista Silva, ${ }^{\text {a }}$ Camila Fontes Neves da Silva, ${ }^{\text {b }}$ Anamaria Dias Pereira Alexiou, ${ }^{\text {a }}$ and Sofia Nikolaou*a
${ }^{a}$ Departamento de Química, Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC²), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto - SP, Brazil. sofia@ffclrp.usp.br. ${ }^{b}$ Departamento de Bioquímica, Laboratório de Processos Fotoinduzidos e Interfaces (LPFI), Instituto de Química, Universidade de São Paulo, São Paulo, Brazil

Figure ESI 1. High resolution mass spectrum of $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}^{2}\right] \mathrm{PF}_{6}$, displaying the molecular ion $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}\right]^{+}$at $\mathrm{m} / \mathrm{z} 962$; positive acquisition mode.

ESI 2. Expansion of the molecular ion peak at $m / z 962$ (top) and the match between the simulated (black line) and the experimental (red line) isotopic pattern for the ion $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}\right]^{+}$(bottom).

Figure ESI 3. Spectrophotometric control of a 1.98×10^{-4} acetonitrile solution of compound $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}^{2} \mathrm{PF}_{6}\right.$, kept under ambient light.

Figure ESI 4. Spectrophotometric control of a 1.98×10^{-4} acetonitrile solution of compound $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}^{2}\right] \mathrm{PF}_{6}$, kept in the absence of light.

Figure ESI 5. ${ }^{1} \mathrm{H}$ NMR and COSY spectra of compound $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}\right] \mathrm{PF}_{6}$, registered from $1.5 \times 10^{-2} \mathrm{M} \mathrm{CD}{ }_{3} \mathrm{CN}$ solution.

Figure ESI6. Infrared spectrum of compound $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}^{2}\right] \mathrm{PF}_{6}$, collected from KBr pellets.

Table ESI 1. Infrared data observed for compound $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}\right] \mathrm{PF}_{6}$, collected from KBr pellets.

$\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}^{2}\right] \mathrm{PF}_{6}$	$\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{3}\right] \mathrm{PF}_{6}{ }^{\mathrm{a}}$	Tentative assignement
$2956 \mathrm{vw} ; 2917 \mathrm{~m}, 2849 \mathrm{~m}$	$3095 \mathrm{w} ; 3064 \mathrm{w} ; 2931 \mathrm{w}$	$\mathrm{v}(\mathrm{CH})$
1904 s	-	$v(\mathrm{NO})$
1636 m	1633 m	v aromatic ring; $\mathrm{vas}_{\mathrm{as}}(\mathrm{COO})$
1590 s	1598 m	$v(\mathrm{CC}) ; v(\mathrm{CN})$ aromatic ring
1560 w	1556 w	$v_{\mathrm{as}}(\mathrm{COO})$
1430 s	1427 s	$v_{s}(\mathrm{COO})$
1385 vs	1387 w	$v(\mathrm{CC})$ aromatic ring
1355 sh		$\delta_{\mathrm{ip}}\left(\mathrm{CH}_{3}\right)$
$1279 \mathrm{w} ; 1213 \mathrm{w} ; 1180 \mathrm{w}$	$1274 \mathrm{w} ; 1215 \mathrm{w} ; 1180 \mathrm{w}$	$\delta_{\mathrm{ip}}(\mathrm{CH})$ aromatic ring
843 s	844 s	$v\left(\mathrm{PF}_{6}\right)$
$751 \mathrm{w} ; 684 \mathrm{w} ; 640 \mathrm{w}$	$741 \mathrm{w} ; 683 \mathrm{w} ; 639 \mathrm{w}$	$\delta_{\text {oop }}(\mathrm{CH})$ aromatic ring

afrom reference [1], vw = very weak; $w=$ weak; $m=$ medium; $s=$ strong; vs = very strong; $v=$ stretching; $\mathrm{v}_{\mathrm{s}}=$ symmetric stretching; $\mathrm{v}_{\mathrm{as}}=$ antisymmetric stretching; $\delta_{\mathrm{ip}}=$ in plane bending; $\delta_{\text {oop }}=$ out of plane bending; sh=shoulder

Figure ESI7. Deconvoluted electronic spectra of compounds $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{~L})_{2} \mathrm{NO}\right] \mathrm{PF}_{6}$ where L = (A) 4-acethylpyridine; (B) 3-methylpyridine; (C) isoquinoline; (D) 4-methylpyridine and (E) 4terpyridine. Deconvolutions were performed using Origin ${ }^{\circ} 2020$.

Figure ESI8. Dependence of the $v(\mathrm{NO})$ stretching frequency with the pKa of the ancillary ligands L for the nitrosyl clusters of general formula $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{~L})_{2} \mathrm{NO}^{2}\right] \mathrm{PF}_{6}$.

Figure ESI9. Dependence of the IC band energy $\left(\lambda_{1}\right)$ with the $p K a$ of the ancillary ligands L for the nitrosyl clusters of general formula $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{~L})_{2} \mathrm{NO}^{2} \mathrm{PF}_{6}\right.$.

Figure ESI10. Dependence of the CLCT band energy $\left(\lambda_{4}\right)$ with the pKa of the ancillary ligands L for the nitrosyl clusters of general formula $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{~L})_{2} \mathrm{NO}^{2}\right] \mathrm{PF}_{6}$.

Figure ESI11. Dependence of the $v_{\mathrm{as}}(\mathrm{COO})$ stretching frequency with the pKa of the ancillary ligands L for the nitrosyl clusters of general formula $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{~L})_{2} \mathrm{NO}^{2}\right] \mathrm{PF}_{6}$.

Figure ESI12. Dependence of the $\delta\left(\mathrm{CH}_{3}\right)$ chemical shifts with the pKa of the ancillary ligands L for the nitrosyl clusters of general formula $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{~L})_{2} \mathrm{NO}^{2}\right] \mathrm{PF}_{6}$.

Chemical Actinometry

A actinometer is defined by IUPAC as "a chemical system or physical device by which the number of photons in a beam absorbed in a defined space of a chemical reactor can be determined integrally or per unit of time". ${ }^{6}$ A chemical actinometer is a chemical system that has a known quantum yield and, therefore, is subjected to a photoinduced reaction in order to determine parameters of the equipment used, such as the intensity of the radiation used. The chemical actinometers are still preferred over a physical actinometer due to the accessibility and reproducibility achieved for these systems. ${ }^{7}$

The ferrioxalate actinometer consists of two reactions, described in equations 1 and 2: the first being a photoinduced reaction of reduction of Fe^{3+} from the ferrioxalate to Fe^{2+} and the second, occurring in acid buffered medium, consisting of the reaction of the Fe^{2+} ion with 1,10- phenanthroline, generating a complex that allows the measurement of absorbance at its maximum absorption at $510 \mathrm{~nm}\left(\varepsilon_{510 \mathrm{~nm}}=11100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) .^{8}$ Thus, since the quantum yield of the process is known for different wavelengths, from absorbance measurements of the complex generated in equation 2 , it is possible to determine the intensity of the irradiated light - which will be applied in a subsequent photochemical process.

$$
\begin{gathered}
2\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]_{(\mathrm{aq})}^{3-\mathrm{h} v} \rightarrow 2 \mathrm{FeC}_{2} \mathrm{O}_{4(\mathrm{aq})}+3\left[\mathrm{C}_{2} \mathrm{O}_{4}\right]_{(\mathrm{aq})}^{2-}+2 \mathrm{CO}_{2(\mathrm{~g})}(\text { Equation 1) } \\
\left.\mathrm{Fe}_{(\mathrm{aq})}^{2+}+3 \text { phen }_{(\mathrm{aq})} \rightarrow[\mathrm{Fe} \text { (phen) })_{3}^{2+}\right]_{(\mathrm{aq})}^{2+}(\text { Equation } 2)
\end{gathered}
$$

To determine the intensity of the light irradiated in the NO photorelease experiment at 365 nm , the ferrioxalate actinometer was employed. For the procedure, three solutions were used: a) $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}, 6 \mathrm{mmol} \mathrm{L}{ }^{-1}$; b) an acidic solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{3} \mathrm{CCOONa}$ prepared by mixing 600 mL of a $1 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium acetate aqueous solution and 360 mL of a $1 \mathrm{~mol} \mathrm{~L}^{-1}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, followed by dilution to 1 L ; c) 0.1% 1,10-phenanthroline solution. For the measurements, 2 mL of the potassium ferrioxalate solution were placed in a 10 mL volumetric flask (control sample) and 3 mL (V1) were placed in a quartz cell. This cell containing the solution was subjected to gentle agitation and 5 minutes of irradiation at 365 nm by Boitton/Lucamat lamps 6W T-5-BL8. After an interval of 5 minutes, 2 mL of this irradiated solution (V2) was transferred to another 10 mL volumetric flask (V3). To the two prepared flasks, 2.5 ml of the acid solution and 1 ml of the phenanthroline solution were added and the flasks volume were completed with distilled water. The solutions were shaken and stored in the dark for 1 hour and absorbance measurements were made for these solutions using the Agilent Technologies Cary 60 UV-Vis spectrophotometer. This procedure was performed in triplicate. It was observed that after a period of 1 hour, the control solution remained green, while the irradiated solution presented an orange color, corresponding to the Fe^{2+}-phen complex.

The intensity of the used lamp is given by equation 3 and the parameter nFe (number of Fe^{2+} ions generated) is determined by equation $4:^{9,10}$

$$
\mathrm{I}=\frac{\mathrm{nFe}}{\Phi F e \cdot \mathrm{t} \cdot\left(1-10^{-\mathrm{A}}\right)}(\text { Equation } 3)
$$

I = intensity of light at 365 nm
$\mathrm{nFe}=$ number of moles of Fe^{2+}
ФFe= quantum yield of Fe^{2+} formation (1.25)
$\mathrm{t}=$ irradiation time (5 minutes)
$A=$ absorbance of the control solution at the irradiation wavelength

$$
\mathrm{nFe}=\frac{\mathrm{A}_{510} \cdot \mathrm{~V}_{1} \cdot \mathrm{~V}_{3}}{\mathrm{~V}_{2} \cdot 1 \cdot \varepsilon}(\text { Equation } 4)
$$

$\mathrm{nFe}=$ number of moles of Fe^{2+} ions
$A_{510}=$ absorbance of the irradiated solution at 510 nm
$V_{1}=$ volume of the irradiated sample ($3 \times 10^{-3} \mathrm{~L}$)
$\mathrm{V}_{2}=$ volume of the irradiated aliquot used in the dilution $\left(2 \times 10^{-3} \mathrm{~L}\right)$
$\mathrm{V}_{3}=$ volume of the diluted solution $\left(10 \times 10^{-3} \mathrm{~L}\right)$
I = light path (1 cm)
$\varepsilon=$ molar absorptivity coefficient of the Fe^{2+}-phen complex at $510 \mathrm{~nm}\left(1.11 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$

Then, a $7.0 \times 10^{-2} \mathrm{mmol} \mathrm{L}^{-1}$ solution of the $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}(\mathrm{iq})_{2} \mathrm{NO}^{2}\right] \mathrm{PF}_{6}$ cluster was prepared in acetonitrile and 3 mL of this solution was irradiated at 365 nm for 6 minutes. The absorbance of the solution was measured before and after irradiation, and thus, the quantum yield of the photorelease of NO was determined from equation 5 .

$$
\Phi \mathrm{NO}=\frac{\mathrm{nNO}}{\mathrm{I} \cdot \mathrm{t} \cdot\left(1-10^{-\mathrm{A}}\right)}(\text { Equation } 5)
$$

$\mathrm{nNO}=$ amount of NO released by the photochemical reaction determined by the changing in the absorption band of the complex at $458 \mathrm{~nm}\left(\varepsilon=1703 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$

I = incident light intensity
$\mathrm{t}=$ photolysis time
$A=$ absorbance of the sample at the wavelength of the irradiation

References

B. Possato, V. M. Deflon, Z. Naal, A. L. B. Formiga and S. Nikolaou, Dalt. Trans., 2017, 46,

7926-7938.
C. F. N. da Silva, B. Possato, L. P. Franco, L. C. B. Ramos and S. Nikolaou, J. Inorg. Biochem., 2018, 186, 197-205.

3 N. Cacita, B. Possato, C. F. N. Da Silva, M. Paulo, A. L. B. Formiga, L. M. Bendhack and S. Nikolaou, Inorganica Chim. Acta, 2015, 429, 114-121.

4 H. E. Toma, A. D. P. Alexiou and S. Dovidauskas, Eur. J. Inorg. Chem., 2002, 3010-3017.

5 H. E. Toma, A. D. P. Alexiou, A. L. B. Formiga, M. Nakamura, S. Dovidauskas, M. N. Eberlin and D. M. Tomazela, Inorganica Chim. Acta, 2005, 358, 2891-2899.

6
J. W. Verhoeven, in 'Glossary of terms used in photochemistry (IUPAC reconunendations 1996)', Pure and Applied Chemistry, 1996, 68(12), 2223-2286.

7 H. J. Kuhn, S. E. Braslavsky, and R. Shimidt, Pure and Applied Chemistry, 2004, 76(12), 2105-2146.

8 Y. Quan, S. O. Pehkonen, and M. B. Ray, M. B. Industrial and Engineering Chemistry Research, 2004, 43(4), 948-955.

9 M. Montalti, A. Credi, I. Prodi, M. T. Gandolfi in "Handbook of Photochemistry". 3 ${ }^{\text {rd }}$ Edition. CRC Press - Taylor \& Francis Group. 2006. Chapter 12.

