Supporting Information

Synthesis, Structural and Metal-to-Metal Charge Transfer Properties of Cyanide-Bridged Compound [$\mathrm{Fe}^{\mathrm{II} / \mathrm{III}-\mathrm{NC}-\mathrm{Ru}^{\mathrm{II}}-\mathrm{CN}-~}$ $\mathrm{Fe}^{\mathrm{II} / \mathrm{II}]}$
Yong Wang ${ }^{a^{*}}$
${ }^{a}$ Hubei Key Laboratory of Drug Synthesis and Optimization, Jingchu University of Technology, Jinmen, 444800, Hubei, P. R. China

EXPERIMENTAL SECTION

Materials and syntheses

All manipulations were performed under argon atmosphere with the use of standard Schlenk techniques unless otherwise stated. Dichloromethane was dried by distillation over calcium hydride and diethyl-ether was dried by distillation over sodium wire under argon atmosphere.

Methanol was dried by distillation over magnesium under argon atmosphere and acetone was dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4} . \mathrm{Ru}^{\mathrm{II}}(\mathrm{DMSO})_{4} \mathrm{Cl}_{2}{ }^{1,2} \quad$ (DMSO $=$ dimethyl sulfoxide) was prepared according to the literature procedures. All other reagents were available commercially and used without further purification

trans-Ru $\left.{ }^{\text {II }}{ }^{\text {tbu }} \mathbf{p y}\right)_{4}(\mathrm{CN})_{2}$

A mixture of $\mathrm{Ru}^{\mathrm{II}} \mathrm{Cl}_{2}(\mathrm{DMSO})_{4}(1000 \mathrm{mg}, 2.065 \mathrm{mmol})$ and 4-tert-butylpyridine $(10 \mathrm{ml})$ was stirred magnetically and heated to $130^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, $\mathrm{KCN}(1342$ $\mathrm{mg}, 20.65 \mathrm{mmol}$) in 6 ml of water was added. After refluxing for 3 h , the organic layer was separated from the mixed solution by extract. After hexane $(100 \mathrm{ml})$ was added to the organic
layer, large amount of yellow solid appeared. A yellow precipitate was isolated by filtration and washed with water, 2-propanol and ethyl ether, respectively. After drying in air, the desired yellow product (1088 mg, 67\%) was obtained. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Ru}: \mathrm{C}, 59.58 ; \mathrm{H}, 7.89$; N, 10.97%. Found: C, $59.76 ; \mathrm{H}, 7.54$; N, 10.92\%. IR ($\mathrm{v}_{\mathrm{CN}}, \mathrm{KBr}$ pellet, cm^{-1}): 2058 (s). UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right), \lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right): 248$ (11652), 374 (22651). MS, m/z: $694.2[\mathrm{M}+\mathrm{H}]^{+}$.

X-Ray structure determination. The single crystal data of complexes $\mathbf{1 - 3}$ and trans$R u\left({ }^{t b u} p y\right)_{4}(\mathrm{CN})_{2}$ were all collected on a Saturn724+ diffractometer equipped with graphitemonochromatic $\operatorname{Mo} \mathrm{K}_{\alpha}(\lambda=0.71073 \AA)$ radiation using an ω-scan mode at 123 K . Data reduction, scaling and absorption corrections were performed using CrystalClear (Rigaku Inc., 2016). A Multi-scan absorption correction was performed using RIGAKU/MSC(2004), CrystalClear Version 1.3.6. All the structures were solved by the ShelXL-2016/4-5 ${ }^{3-5}$ structure solution program using direct methods and refined by full matrix least squares minimisation on F^{2} using version 2018/3 of ShelXL 2018/3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model. The R values are defined as ${ }_{\omega} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \Sigma\right| F_{\mathrm{o}} \mid$ and ${ }_{\omega} R_{2}=\left[\Sigma\left[\omega_{\omega}\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\omega\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$. The detailed crystal data for complexes 1-3 and trans-Ru($\left.{ }^{(b u}{ }^{\mathrm{py}}\right)_{4}(\mathrm{CN})_{2}$ were summarized in Table S 1 , and selected bond lengths and angles are presented in Table S2.

CCDC- 1989021 trans $-\mathrm{Ru}\left({ }^{\left(b u^{p}\right.}{ }^{\text {py }}\right)_{4}(\mathrm{CN})_{2}$, CCDC- 1989022 (1), CCDC-1989024(2), CCDC1989023 (3) contain the supplementary crystallographic data, related bond lengths and angles for this paper.

Table S1. Crystallographic Data and Details of Structure Determination for Complexes 1-3 and trans-Ru(tbupy $)_{4}(\mathrm{CN})_{2}$

Complex	1. $4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	3-3 $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$	trans-Ru($\left.{ }^{\text {bup }} \mathrm{py}\right)_{4}(\mathrm{CN})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
CCDC NO.	1989022	1989024	1989023	1989021
Chemical formula	$\begin{gathered} \mathrm{C}_{104} \mathrm{H}_{118} \mathrm{Cl}_{8} \mathrm{~F}_{12} \mathrm{~F} \\ \mathrm{e}_{2} \mathrm{~N}_{6} \mathrm{P}_{6} \mathrm{Ru} \end{gathered}$	$\begin{gathered} \mathrm{C}_{103} \mathrm{H}_{116} \mathrm{~F}_{18} \mathrm{Fe}_{2} \mathrm{~N}_{6} \\ \mathrm{OP}_{7} \mathrm{Ru} \end{gathered}$	$\begin{gathered} \mathrm{C}_{117} \mathrm{H}_{140} \mathrm{~F}_{24} \mathrm{Fe}_{2} \\ \mathrm{~N}_{10} \mathrm{O}_{3} \mathrm{P}_{8} \mathrm{Ru} \end{gathered}$	$\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Ru}$
Formula weight	2362.23	2225.57	2650.91	765.99
Colour and Habit	Red prism	Red prism	Brown prism	Orange prism
Crystal Size / mm	$0.48 \times 0.37 \times 0.11$	$0.51 \times 0.33 \times 0.18$	$0.49 \times 0.38 \times 0.23$	$0.31 \times 0.15 \times 0.14$
T / K	123	123	123	123
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Trigonal
Space group	$P 2_{1} / c$	$P 2_{1} / n$	Pbca	R-3
a / \AA	13.838(3)	13.0216(17)	28.530(6)	25.887(8)
b / \AA	30.951(8)	32.214(5)	26.984(5)	25.887(8)
c / \AA	25.870(7)	27.028(4)	34.406(7)	15.915(6)
α / deg	90.00	90.00	90.00	90.00
β / deg	96.100(6)	98.184(3)	90.00	90.00
γ / deg	90.00	90.00	90.00	120.00
V / \AA^{3}	11017(5)	11222(3)	26487(9)	9236(6)
Z	4	4	8	9
$\rho_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.424	1.317	1.330	1.239
$\lambda\left(\mathrm{Mo} \mathrm{K}_{\alpha}, \AA\right)$	0.71073	0.71073	0.71073	0.71073
$\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha}, \mathrm{mm}^{-1}\right)$	0.745	0.568	0.509	0.428
Completeness	99.6\%	99.6\%	99.4\%	97.9\%
$F(000)$	4856	4588	10944	3654
h, k, l, range	$\begin{gathered} -16 \leq h \leq 15, \\ -36 \leq k \leq 36, \\ -30 \leq l \leq 28 \end{gathered}$	$\begin{aligned} & -15 \leq h \leq 14, \\ & -38 \leq k \leq 37, \\ & -32 \leq l \leq 32 \end{aligned}$	$\begin{gathered} -35 \leq h \leq 37, \\ -31 \leq k \leq 35, \\ -44 \leq l \leq 44 \end{gathered}$	$\begin{gathered} -33 \leq h \leq 33, \\ -33 \leq k \leq 33, \\ -20 \leq l \leq 20 \end{gathered}$
θ range / deg	2.15-25.00	2.24-25.00	2.05-25.00	2.72-27.45
Independent reflections	19340	19681	30180	4608
Reflections collected	77510	78718	201480	36819
$R_{\text {int }}$	0.0706	0.0409	0.0946	0.0663
Params/restraints/ Data(obs.)	1180/38/ 19340	1504/982/ 19681	1360/327/30180	331/8/4608
GOF	1.097	1.048	1.038	1.066
$R_{1},{ }_{\omega} R_{2}(I>2 \sigma(I))$	0.0646, 0.1458	0.0644, 0.1782	0.0841, 0.2228	$0.0376,0.1016$
$R_{1},{ }_{\omega} R_{2}($ all data)	0.0832, 0.1598	0.0738, 0.1886	0.1038, 0.244	0.0389, 0.1035

$$
R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| \cdot{ }_{\omega} R_{2}=\left[\Sigma\left[\omega\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[\omega\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right]^{1 / 2} .
$$

Table S2. Selected Bond Lengths (Á) and Bond Angles (deg) for Complexes 1-3

	1	2	3	trans-Ru(thuy $)_{4}(\mathrm{CN})_{2}$
Ru1-C1	2.036(4)	2.050(4)	2.038(4)	2.061(2)
Ru1-C2	2.042(4)	1.988(4)	2.014(4)	
Ru1-N3	2.107(4)	2.111(3)	2.106(4)	2.103(2)
Ru1-N4	2.091(3)	2.093(3)	$2.115(3)$	2.110(2)
Ru1-N5	2.097(4)	2.100(4)	2.112(3)	
Ru1-N6	2.105(4)	2.112(3)	2.102(3)	
$\mathrm{C} 1 \equiv \mathrm{~N} 1$	1.161(5)	1.171(5)	$1.155(5)$	1.149(3)
$\mathrm{C} 2 \equiv \mathrm{~N} 2$	1.157(5)	$1.176(5)$	1.174(5)	
Fe1-N1	1.937(4)	1.913(3)	1.908(4)	
Fe2-N2	1.931(4)	1.886 (3)	1.896(3)	
Fe1-P1	2.197(1)	$2.203(1)$	2.282(2)	
Fe1-P2	2.204(1)	2.207(1)	2.283(2)	
Fe2-P3	2.196(1)	2.247(1)	2.266(1)	
Fe2-P4	2.204(1)	2.250 (1)	2.272(1)	
C1-Ru1-C2	178.6(2)	177.4(2)	176.3(2)	180.0
N1 $=\mathrm{C} 1-\mathrm{Ru} 1$	176.0(4)	178.8(4)	174.0(4)	179.9(2)
N2 $=\mathrm{C} 2-\mathrm{Ru} 1$	176.7(4)	174.7(4)	175.8(4)	
$\mathrm{C} 1 \equiv \mathrm{~N} 1-\mathrm{Fe} 1$	173.7(4)	174.9(4)	167.0(4)	
$\mathrm{C} 2 \equiv \mathrm{~N} 2-\mathrm{Fe} 2$	173.8(4)	176.0(3)	172.8(3)	
Fe1 \cdots Ru1	5.121	5.135	5.047	
Fe2 \cdots Ru1	5.116	5.049	5.068	
$\mathrm{Fe} 1 \cdots \mathrm{Fe} 2$	10.228	10.162	10.019	

Table S3 Cyanide Stretching Frequencies, Electronic Absorption Spectra and CyclicVoltammetry Data for Complex 1-3 and Related Precursors.

Compound	$v_{\mathrm{CN}}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$	$P(\mathrm{~V}) / \mathrm{CH}_{3} \mathrm{CN}$	$P(\mathrm{~V}) / \mathrm{CH}_{2} \mathrm{Cl}_{2}$
trans $-\mathrm{Ru}\left({ }^{\left(b u^{\mathrm{py}}\right)_{4}(\mathrm{CN})_{2}}\right.$	2058	$248(11652), 374(22651)$	0.62	
$\mathbf{1}$	2071	$476(1214)$		$0.29,0.45$
$\mathbf{2}$	2068,2011	$465(1468), 957(2381)$	$0.31,0.45$	
$\mathbf{3}$	2018	$468(1980), 780(5573)$		

Table S4. Mössbauer Parameters for Complexes 1-3

Compound	IS $\left(\mathrm{mm} \mathrm{s}^{-1}\right)$	QS $\left(\mathrm{mm} \mathrm{s}^{-1}\right)$	
$\mathbf{1}(298 \mathrm{~K})$	0.371	2.013	
$\mathbf{2}(298 \mathrm{~K})$	0.364	1.932	34.3%
	0.395	0.736	65.7%

$\mathbf{3}(298 \mathrm{~K})$	0.517	1.205	
$\mathbf{3}(10 \mathrm{~K})$	0.349	0.853	

Figure S1. Molecular structure of trans $-\mathrm{Ru}\left({ }^{(b u} \mathrm{py}\right)_{4}(\mathrm{CN})_{2}$, hydrogen atoms and solvent molecules have been removed for clarity.

Figure S2. Cyclic voltammogram of trans-Ru($\left.{ }^{(t b u}{ }^{\mathrm{py}}\right)_{4}(\mathrm{CN})_{2}$ in a 0.10 M acetonitrile solution of $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ at a scan rate of $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S3. Cyclic voltammogram of complex $\mathbf{1}$ in a 0.10 M acetonitrile solution of $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ at a scan rate of $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S4. IR spectra of complex trans- $\mathrm{Ru}\left({ }^{\text {t bupy }}\right)_{4}(\mathrm{CN})_{2}$ in solid-state samples at room temperature. (KBr pellet)

Figure S5. Electronic absorption spectra of trans- $\mathrm{Ru}(\text { bupy })_{4}(\mathrm{CN})_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$ solution at room

Figure S6. EPR spectra of complexes 1-3 in polycrystalline sample at 298 K .

Figure S7. Zero field Mössbauer spectra of $\mathbf{1}$ at 298 K . The solid line represents a best fit. (IS = $0.371 \mathrm{~mm} / \mathrm{s}, \mathrm{QS}=2.013 \mathrm{~mm} / \mathrm{s}$)

Figure S8. Zero field Mössbauer spectra of 2 at 298 K. The red line represents the sum of contributions for all types of Fe in the sample; the blue line is the simulated contribution of low-
spin $\mathrm{Fe}^{\text {III }}(\mathrm{IS}=0.395 \mathrm{~mm} / \mathrm{s}, \mathrm{QS}=0.736 \mathrm{~mm} / \mathrm{s})$; the green line is the simulated contribution of lowspin $\mathrm{Fe}^{\text {II }}(\mathrm{IS}=0.364 \mathrm{~mm} / \mathrm{s}, \mathrm{QS}=1.932 \mathrm{~mm} / \mathrm{s})$.

Reference

(1) Canard, G.; Piguet, C. Inorg. Chem. 2007, 46, 3511.
(2) Evans, I. P.; Spencer, A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 0, 204.
(3) Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112.
(4) Sheldrick, G. M. In Program for X-ray Crystal Structure Refinement; University of Göttingen: Germany 2016.
(5) Sheldrick, G. M. Acta Crystallogr. Sect. C-Struct. Chem. 2015, 71, 3.

