Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplemental Information

Regulation of Conjugate Rigid Plane Structure to Achieving Transform Different Properties

Xiao-Tong Kan^a, Hong Yao^{*a}, Yan-Bing Niu^a, Yin-Ping Hu,^a You-Ming Zhang^{a,b}, Tai-Bao Wei^a, and Qi Lin^{*a}

^[a] Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070. P. R. China

E-mail: <u>yhxbz@126.com</u>; <u>linqi2004@126.com</u>;

^[b] Gansu Natural Energy Research Institute, Lanzhou, Gansu 730046, China

Table of Contents

Fig. S1. ¹H NMR (600 MHz, 298K) spectra of B_1 in DMSO- d_6 .

Fig. S2. ¹H NMR (600 MHz, 298K) spectra of B_2 in DMSO- d_6 .

Fig. S3. ¹H NMR (600 MHz, 298K) spectra of B_3 in DMSO- d_6 .

Fig. S4. FT-IR spectrum of B_1 , B_2 , B_3 .

Fig. S5. Fluorescence quantum yield according to the corresponding formula (using quinoline sulfate as standard).

Fig. S6. (a-c) Fluorescent spectrum linear range for Hg^{2+} by addition of various concentrations of Hg^{2+} into B_1 , B_2 and B_3 . (d-f) The photograph of the linear range based on Bensi-Hildebrand equation to calculated K_a between Hg^{2+} with B_1 , B_2 and B_3 .

Table S1. Calculation formula and related date of the detection limits of B1, B2, B3.

Table S2. Association constants of the B_1 , B_2 , B_3 treated by Hg^{2+} , calculation formula and related data.

Fig. S7. The optimized structure, frontier orbitals (HOMO and LUMO) and electronic potential maps (ESP) of B_1 , B_2 and B_3 .

Fig. S8. The simulated spectrum and measured spectrum of B₁, B₂ and B₃.

Fig. S9. (a) Chemical shift equimolar ratio diagram of B₁.(b) Job's plot of B₂ and B₃.

Synthesis of compound B₁, B₂ and B₃

We synthesized compound B_1 , B_2 and B_3 according to the literature. The amidation reaction was carried out at low temperature by grinding method, and then the ringclosure reaction was completed during reflux. The 1,2-diaminobenzene (7.2 g, 67 mmol), polyphosphoricacid (12 mL) and oxalic acid (4.2 g, 33 mmol) were added to ethylene glycol (50 mL). The solution was refluxed 1.5 h at 160°C. Then cool to room temperature, deionized water (300 mL) was added. After filtration, the product was recrystallized to obtained B_1 as a yellow needle-like solid (12.9 g, yield 83.0%). The 1,2-diaminobenzene (7.2 g, 67 mmol), polyphosphoricacid (12 mL) and 1,4dicarboxybenzene (4.2 g, 33 mmol) were added to ethylene glycol (50 mL). The 1,2diaminobenzene (7.2 g, 67 mmol), polyphosphoricacid (12 mL) and Diphthalic acid (4.2 g, 33 mmol) were added to ethylene glycol (50 mL). The synthesis method of B_2 (yield 78.7%), **B**₃ (yield 62.7%) the same as that of **B**₁. **B**₁:¹H NMR (DMSO- d_6 , 600 MHz), δ/ppm: 13.48 (s, 2H), 7.61(s, 2H), 7.41 (s, 2H), 7.27 (s, 2H), 7.26 (s, 2H); **B**₂: ¹H NMR (DMSO-*d*₆, 600 MHz) δ/ppm: 13.21 (s, 2H), 8.41 (s, 4H), 7.87(s, 4H), 7.30 (s, 4H); **B**₃: ¹H NMR (DMSO-*d*₆, 600 MHz) δ/ppm: 13.11 (s, 2H), 8.44 (s, 4H), 8.15 (s, 4H), 7.80 (s, 4H), 7.30 (s, 4H);

Fig. S1 ¹H NMR (400 MHz, 298K) spectra of B_1 in DMSO- d_6 .

Fig. S2 ¹H NMR (400 MHz, 298K) spectra of B_2 in DMSO- d_6 .

Fig. S3 ¹H NMR (400 MHz, 298K) spectra of B₃ in DMSO-*d*₆.

Fig. S8 Fluorescence quantum yield according to the corresponding formula (using quinoline sulfate as standard).

The fluorescence quantum yield of the sample was calculated using quinine sulfate as the standard ($\Phi_{std} = 0.55$). In this equation, Φ_B and Φ_{std} are the fluorescence

quantum yields of the sample and the standard, respectively; I_B and I_{std} are the integral areas of the fluorescent spectra, respectively; A_B and A_{std} are the absorbances of the sample and the standard at the excitation wavelength, respectively.

$$\Phi_{\rm B} = \Phi_{\rm std} \times (I_{\rm B} / I_{\rm std}) \times (A_{\rm std} / A_{\rm B}) \Phi_{\rm std}$$

$$\Phi_{\rm B1} = 0.55 \times (2760.63/3393.82) \times (0.0224 / 0.0227) = 0.43$$

$$\Phi_{\rm B2} = 0.55 \times (6024.76/3493.76) \times (0.0221 / 0.0453) = 0.46$$

$$\Phi_{\rm B3} = 0.55 \times (7411.26/3756.88) \times (0.0221 / 0.0528) = 0.45$$

Fluorescence quantum yield: 43.0%, 46.0%, 45.0%.

Fig. S9 (a-c) Fluorescent spectrum linear range for Hg^{2+} by addition of various concentrations of Hg^{2+} into B_1 , B_2 and B_3 . (d-f) The photograph of the linear range based on Bensi-Hildebrand equation to calculated K_a between Hg^{2+} with B_1 , B_2 and B_3 .

Fig. S10 A plot of fluorescent intensity depending on the concentration of Hg^{2+} in the range from different equivalents: (a)B₁, (b) B₂ and (c)B₃.

Table S1 Comparison of recognition and adsorption properties of B_1 , B_2 and B_3 with other reported sensors.

Materials	Detection Ion	Recognition property	Adsorption property	Ref.
Biocompatible Nanodendrimer	Hg^{2+}	-	\checkmark	[20]
Magnetic bentonite (M-B)	Hg ²⁺	-	\checkmark	[21]
Diethylenetriaminepentaacetic acid-modified cellulose	Hg^{2+}	-	\checkmark	[22]
L-Cysteine Functionalized UiO-66 MOFs	Hg^{2+}	-	\checkmark	[23]
Mesoporous Silica–Gelatin Aerogels	Hg^{2+}	-	\checkmark	[24]
Rhodamine-naphthalimide conjugated chemosensor	Hg^{2+}	\checkmark	-	[25]
Nitrogen-doped carbon dots	Hg^{2+}	\checkmark	-	[26]
Fluorescent monomer of boron dipyrromethene (BODIPY) derivative	Hg^{2+}	\checkmark	-	[27]
Luminescent complex	Hg^{2+}	\checkmark	-	[28]
FeOOH modified nanoporous gold microelectrode	Hg^{2+}	\checkmark	-	[29]
Bisbenzimidazole derivatives (B1, B2 and B3)	Hg^{2+}	V	\checkmark	This work

Compound	A(Slope)	B(Intercept)	R ²	δ	S	
B1	115.106	174.122	0.998	5.239	1.15×10 ⁸	
B ₂	15.438	379.712	0.995	0.953	1.63×10 ⁷	
B ₃	14.084	434.887	0.995	5.111	1.40×10^{7}	
calculation formula	Linear Equation: $y=Ax + B$ $\delta = \sqrt{\frac{\sum (F - \overline{F})^2}{(N-1)}}$ N=20 K=3 $S = A \times 10^6$					
	$LOD = K \times \delta / S$					

Table S2. Calculation formula and related date of the detection limits of B_1 , B_2 , B_3 .

Table S3. Association constants of the B_1 , B_2 , B_3 treated by Hg^{2+} , calculation formula and related data.

Compound	Metal ions	A(Slope)	B(Intercept)	\mathbb{R}^2	Ka/ M ⁻²		
\mathbf{B}_1	Hg^{2+}	2.32	26.67	0.994	3.83×10 ¹¹		
B ₂	Hg^{2+}	2.96	24.58	0.993	4.73×10 ¹⁰		
B ₃	Hg^{2+}	2.75	21.75	0.997	2.79×10 ⁹		
calculation		Linear Equation: y=Ax + B					
formula	$\operatorname{Ln}\frac{I-I_{\min}}{I_{\max}-I} = LnKa + nLn[M^{2+}]$						
B ₁	نور دون وهر روز	B,	5.5852 588 58985 589	ada ara Ada garaj	B3		
)						
E _{LUMO} = -1.75e	V	$E_{LUMO} = -2.01$	eV	ELUMO	= -1.96eV		
$\mathbf{\Delta}\mathbf{E}=4.$	34eV	ΔΕ=	= 3.85eV		ΔE= 3.75eV		
) 🧃	() (((((((((((((((((((ļ ļ ā (99992		
$E_{\rm HOMO}$ = -6.09	leV	E_{HOMO} = -5.86	5eV	E _{HOMO}	= -5.71eV		
	1 416 1	850	1 859	-1 909	1.909		

Fig. S11. The optimized structure, frontier orbitals (HOMO and LUMO) and electronic potential maps (ESP) of B_1 , B_2 and B_3 .

Fig. S12. The simulated spectrum and measured spectrum of B_1 , B_2 and B_3 .

Fig. S13. (a) Chemical shift equimolar ratio diagram of B₁.(b) Job's plot of B₂ and B₃.

Fig. S14 Fluorescence stability (a) B_1 , (b) B_2 , (c) B_3 in various pH conditions.