Supplemental Information

Regulation of Conjugate Rigid Plane Structure to Achieving Transform Different Properties

Xiao-Tong Kan ${ }^{\text {a }}$, Hong Yao*a, Yan-Bing Niu ${ }^{\text {a }}$, Yin-Ping Hu, ${ }^{\text {a }}$ You-Ming Zhang ${ }^{\text {a,b }}$, Tai-Bao Weia ${ }^{\text {a }}$, and Qi Lin*a
[a] Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070. P. R. China

E-mail: yhxbz@126.com ; linqi2004@,126.com ;
${ }^{[b]}$ Gansu Natural Energy Research Institute, Lanzhou, Gansu 730046, China

Table of Contents

Fig. S1. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, 298 \mathrm{~K}$) spectra of \mathbf{B}_{1} in DMSO- d_{6}.
Fig. S2. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, 298 \mathrm{~K}$) spectra of $\mathbf{B}_{\mathbf{2}}$ in DMSO- d_{6}.
Fig. S3. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, 298 \mathrm{~K}$) spectra of \mathbf{B}_{3} in DMSO- d_{6}.
Fig. S4. FT-IR spectrum of $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}$.
Fig. S5. Fluorescence quantum yield according to the corresponding formula (using quinoline sulfate as standard).

Fig. S6. (a-c) Fluorescent spectrum linear range for Hg^{2+} by addition of various concentrations of Hg^{2+} into $\mathbf{B}_{1}, \mathbf{B}_{2}$ and \mathbf{B}_{3}. (d-f) The photograph of the linear range based on Bensi-Hildebrand equation to calculated K_{a} between Hg^{2+} with $\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}$ and B_{3}.

Table S1. Calculation formula and related date of the detection limits of $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}$.
Table S2. Association constants of the $\mathbf{B}_{1}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{3}$ treated by Hg^{2+}, calculation formula and related data.

Fig. S7. The optimized structure, frontier orbitals (HOMO and LUMO) and electronic potential maps (ESP) of $\mathbf{B}_{1}, \mathbf{B}_{2}$ and \mathbf{B}_{3}.

Fig. S8. The simulated spectrum and measured spectrum of $\mathbf{B}_{1}, \mathbf{B}_{2}$ and \mathbf{B}_{3}.
Fig. S9. (a) Chemical shift equimolar ratio diagram of \mathbf{B}_{1}.(b) Job's plot of \mathbf{B}_{2} and \mathbf{B}_{3}.

Synthesis of compound B_{1}, B_{2} and B_{3}

We synthesized compound $\mathbf{B}_{1}, \mathbf{B}_{2}$ and \mathbf{B}_{3} according to the literature. The amidation reaction was carried out at low temperature by grinding method, and then the ringclosure reaction was completed during reflux. The 1,2-diaminobenzene (7.2 g, 67 $\mathrm{mmol})$, polyphosphoricacid (12 mL) and oxalic acid ($4.2 \mathrm{~g}, 33 \mathrm{mmol}$) were added to ethylene glycol $(50 \mathrm{~mL})$. The solution was refluxed 1.5 h at $160^{\circ} \mathrm{C}$. Then cool to room temperature, deionized water (300 mL) was added. After filtration, the product was recrystallized to obtained \mathbf{B}_{1} as a yellow needle-like solid (12.9 g, yield 83.0\%). The 1,2-diaminobenzene ($7.2 \mathrm{~g}, 67 \mathrm{mmol}$), polyphosphoricacid (12 mL) and 1,4dicarboxybenzene ($4.2 \mathrm{~g}, 33 \mathrm{mmol}$) were added to ethylene glycol (50 mL). The 1,2diaminobenzene ($7.2 \mathrm{~g}, 67 \mathrm{mmol}$), polyphosphoricacid (12 mL) and Diphthalic acid ($4.2 \mathrm{~g}, 33 \mathrm{mmol}$) were added to ethylene glycol (50 mL). The synthesis method of \mathbf{B}_{2} (yield 78.7\%), \mathbf{B}_{3} (yield 62.7%)the same as that of $\mathbf{B}_{1} . \mathbf{B}_{1} \cdot{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600$ MHz), $\delta / \mathrm{ppm}: 13.48$ ($\mathrm{s}, 2 \mathrm{H}$), 7.61(s, 2H), 7.41 ($\mathrm{s}, 2 \mathrm{H}$), 7.27 (s, 2H), 7.26 (s, 2H); \mathbf{B}_{2} : ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta / \mathrm{ppm}$: 13.21 (s, 2H), 8.41 (s, 4H), 7.87(s, 4H), 7.30 $(\mathrm{s}, 4 \mathrm{H}) ; \mathbf{B}_{3}:{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta / \mathrm{ppm}: 13.11(\mathrm{~s}, 2 \mathrm{H}), 8.44(\mathrm{~s}, 4 \mathrm{H}), 8.15$ (s, 4H), 7.80 (s, 4H), 7.30 (s, 4H);

Fig. S1 ${ }^{1} \mathrm{H}$ NMR (400 MHz , 298K) spectra of \mathbf{B}_{1} in DMSO- d_{6}.

Fig. S2 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}$) spectra of \mathbf{B}_{2} in DMSO- d_{6}.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}$) spectra of \mathbf{B}_{3} in DMSO- d_{6}.

Fig. S4 HR-MS Spectrum of \mathbf{B}_{1}.

Fig. S5 HR-MS Spectrum of $\mathbf{B}_{\mathbf{2}}$.

Fig. S6 HR-MS Spectrum of \mathbf{B}_{3}.

Fig. S7 FT-IR spectrum of $\mathbf{B}_{1}, \quad \mathbf{B}_{2}, \quad \mathbf{B}_{3}$.

Fig. S8 Fluorescence quantum yield according to the corresponding formula (using quinoline sulfate as standard).

The fluorescence quantum yield of the sample was calculated using quinine sulfate as the standard $\left(\Phi_{\text {std }}=0.55\right)$. In this equation, Φ_{B} and $\Phi_{\text {std }}$ are the fluorescence
quantum yields of the sample and the standard, respectively; I_{B} and $\mathrm{I}_{\text {std }}$ are the integral areas of the fluorescent spectra, respectively; A_{B} and $\mathrm{A}_{\text {std }}$ are the absorbances of the sample and the standard at the excitation wavelength, respectively.

$$
\begin{gathered}
\Phi_{\mathrm{B}}=\Phi_{\text {std }} \times\left(\mathrm{I}_{\mathrm{B}} / \mathrm{I}_{\text {std }}\right) \times\left(\mathrm{A}_{\text {std }} / \mathrm{A}_{\mathrm{B}}\right) \Phi_{\text {std }} \\
\Phi_{\mathrm{B} 1}=0.55 \times(2760.63 / 3393.82) \times(0.0224 / 0.0227)=0.43 \\
\Phi_{\mathrm{B} 2}=0.55 \times(6024.76 / 3493.76) \times(0.0221 / 0.0453)=0.46 \\
\Phi_{\mathrm{B} 3}=0.55 \times(7411.26 / 3756.88) \times(0.0221 / 0.0528)=0.45
\end{gathered}
$$

Fluorescence quantum yield: $43.0 \%, 46.0 \%, 45.0 \%$.

Fig. S9 (a-c) Fluorescent spectrum linear range for Hg^{2+} by addition of various concentrations of Hg^{2+} into $\mathbf{B}_{1}, \mathbf{B}_{2}$ and \mathbf{B}_{3}. (d-f) The photograph of the linear range based on Bensi-Hildebrand equation to calculated K_{a} between Hg^{2+} with $\mathbf{B}_{1}, \mathbf{B}_{2}$ and B_{3}.

Fig. S10 A plot of fluorescent intensity depending on the concentration of Hg^{2+} in the range from different equivalents: (a) $\mathbf{B}_{1},(\mathrm{~b}) \mathbf{B}_{2}$ and (c) \mathbf{B}_{3}.

Table S1 Comparison of recognition and adsorption properties of $\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}$ and $\mathbf{B}_{\mathbf{3}}$ with other reported sensors.

Materials	Detection Ion	Recognition property	Adsorption property	Ref.
Biocompatible Nanodendrimer	Hg^{2+}	-	\checkmark	[20]
Magnetic bentonite (M-B)	Hg^{2+}	-	\checkmark	[21]
Diethylenetriaminepentaacetic acid-modified cellulose	Hg^{2+}	-	\checkmark	[22]
L-Cysteine Functionalized UiO-66 MOFs	Hg^{2+}	-	\checkmark	[23]
Mesoporous Silica-Gelatin Aerogels	Hg^{2+}	-	\checkmark	[24]
Rhodamine-naphthalimide conjugated chemosensor	Hg^{2+}	\checkmark	-	[25]
Nitrogen-doped carbon dots	Hg^{2+}	\checkmark	-	[26]
Fluorescent monomer of boron dipyrromethene (BODIPY) derivative	Hg^{2+}	\checkmark	-	[27]
Luminescent complex	Hg^{2+}	\checkmark	-	[28]
FeOOH modified nanoporous gold microelectrode	Hg^{2+}	\checkmark	-	[29]
Bisbenzimidazole derivatives ($\mathrm{B}_{1}, \mathrm{~B}_{2}$ and B_{3})	Hg^{2+}	\checkmark	\checkmark	This work

Table S2. Calculation formula and related date of the detection limits of $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}$.

Compound	A(Slope)	B (Intercept)	R^{2}	δ	S
$\mathrm{~B}_{1}$	115.106	174.122	0.998	5.239	1.15×10^{8}
$\mathrm{~B}_{2}$	15.438	379.712	0.995	0.953	1.63×10^{7}
$\mathrm{~B}_{3}$	14.084	434.887	0.995	5.111	1.40×10^{7}
Linear Equation: y=Ax + B					
calculation formula	$\delta=\sqrt{\frac{\sum(F-\bar{F})^{2}}{(N-1)}}$	$\mathrm{N}=20$	$\mathrm{~K}=3$	$S=A \times 10^{6}$	

$$
L O D=K \times \delta / S
$$

Table S3. Association constants of the $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}$ treated by Hg^{2+}, calculation formula and related data.

Compound	Metal ions	A (Slope)	B (Intercept)	R^{2}	$\mathrm{Ka} / \mathrm{M}^{-2}$
$\mathrm{~B}_{1}$	Hg^{2+}	2.32	26.67	0.994	3.83×10^{11}
$\mathrm{~B}_{2}$	Hg^{2+}	2.96	24.58	0.993	4.73×10^{10}
$\mathrm{~B}_{3}$	Hg^{2+}	2.75	21.75	0.997	2.79×10^{9}
calculation formula	Linear Equation: y=Ax +B				
	$\mathrm{Ln} \frac{I-I_{\min }}{I_{\max }-I}=\operatorname{LnKa+nLn[M^{2+}]}$				

Fig. S11. The optimized structure, frontier orbitals (HOMO and LUMO) and electronic potential maps (ESP) of $\mathbf{B}_{1}, \mathbf{B}_{2}$ and \mathbf{B}_{3}.

Fig. S12. The simulated spectrum and measured spectrum of $\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}$ and $\mathbf{B}_{\mathbf{3}}$.

Fig. S13. (a) Chemical shift equimolar ratio diagram of \mathbf{B}_{1}.(b) Job's plot of \mathbf{B}_{2} and \mathbf{B}_{3}.

Fig. S14 Fluorescence stability (a) $\mathbf{B}_{\mathbf{1}}$, (b) $\mathbf{B}_{\mathbf{2}}$, (c) $\mathbf{B}_{\mathbf{3}}$ in various pH conditions.

