Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Materials

Facile fabrication of electrospun g-

C₃N₄/Bi₁₂O₁₇Cl₂/poly(acrylonitrile-co-maleic acid) heterojunction

nanofibers for boosting visible-light catalytic ofloxacin degradation

Zhujun Huang, Dongying Zhu, Haiyan Wang, Jinhua Luo, Chenxi Zhao, Fuyou Du*

^aCollege of Biological and Environmental Engineering, Changsha University, Changsha 410022, China

> * Corresponding author: F. Du Tel.: +86-731-84261506
> Fax.: +86-731-84261382
> E. mail: dufu2005@126.com (F. Du) jhluo@ccsu.cn (L. Luo)

Preparation of poly(acrylonitrile-co-maleic acid)

Poly(acrylonitrile-co-maleic acid) (PANCMA) was synthesized by using in situ polymerization of acrylonitrile and maleic anhydride. Briefly, maleic anhydride (7.407 g), acrylonitrile (13.15 mL, ρ = 0.8060 g/L), and deionized water (20 mL) were poured into a three-necked flask, then the mixed solution pH was adjusted to 2.0 with dilute sulfuric acid and heated to 60 °C under magnetic stirring. After the temperature was equilibrated at 60 °C, K₂S₂O₈ (0.136 g) and Na₂SO₃ (0.0766 g) were added and reacted for 3 h with the protection of N₂. The resulting polymer was taken out and washed with water and ethanol for several times, respectively, and then filtered, dried at 60 °C in a vacuum oven for 12 h.

Tables

Table S1 Calibration curve, linearity, linear regression coefficient (R^2), and limit of detection (LOD) for determination of OFL by HPLC-UV method

Compound	Calibration curve	Linearity	R ²	LOD	RSD
		(ng/mL)		(ng/mL)	(%)
OFL	y=89.086x-419.16	5-1000	0.9992	2.13	1.52

Note: The limit of detection (LOD) was evaluated on the basis of a signal-to-noise ratio of 3.

Property	Devenuetor	PANCM	g-C ₃ N ₄ /
	rarameter	A	Bi12O17Cl2/PANCMA
Surface Area	Single point surface area at P/Po (m ² /g)	24.9760	5.3186
	BET Surface Area (m ² /g)	25.8848	5.3938
	t-Plot External Surface Area (m ² /g)	26.1887	1.6485
	BJH Adsorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter (m^2/g)	25.036	2.541
	BJH Desorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter (m ² /g)	46.0199	3.2018
	Single point adsorption total pore volume of pores less than 130.9985 nm diameter at P/Po=0.985000000 (cm ³ /g)	0.134838	0.013393
Pore Volume	t-Plot micropore volume (cm ³ /g)	-0.000190	0.002134
	BJH Adsorption cumulative volume of pores between1.7000 nm and 300.0000 nm width (cm³/g)	0.138315	0.016434
	BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter (cm ³ /g)	0.140227	0.018148
Pore Size	Adsorption average pore width (4V/A by BET) (nm)	20.83660	9.93196
	BJH Adsorption average pore width (4V/A) (nm)	22.0990	25.8736
	BJH Desorption average pore width (nm)	12.1884	22.6716

Table S2 Results of $N_{\rm 2}$ adsorption-desorption characteristics on the E-spun PANCMA O C1 /DANCMA non of h

and g-C ₃ N ₄ /Bi ₁₂ O ₁₇ Cl ₂ /PANCMA	nanofibers

Matariala	Removal mode	Time	Removal	Cycle	Referen
Materials		(min)	efficiency	times	cev
MoO ₃ /Ag/g-	Photocatalytic	100	89%	7	[31]
C ₃ N ₄	degradation				
UiO-	Photocatalytic	30	93.4%	4	[32]
67/CdS/rGO	degradation				
Bi ₂ MoO ₆ -rGO-	Photocatalytic	120	02.20/	5	[33]
TiO ₂	degradation	120	92.370		
BiVO ₄ /g-	Photocatalytic	20	02.80/	5	[34]
C ₃ N ₄ /NiFe ₂ O ₄	degradation	20	95.870		
Bi ₂ WO ₆ /Fe ₃ O ₄ /b	Photocatalytic	60	83.1%	5	[35]
iochar	degradation	00			
	Dark adsorption	30		5	[36]
ZnO/Bi ₂ MoO ₆	Photocatalytic	93%	93%		
	degradation	90			
	Dark adsorption	30	96.5%	3	[37]
$g-C_3N_4/NH_2-$	Photocatalytic	150			
MIL-88B(Fe)	degradation				
	Dark adsorption	90	80.96%	4	[38]
composite	Photocatalytic	270			
	degradation				
E-spun g-	Dark adsorption	6			
C ₃ N ₄ /Bi ₁₂ O ₁₇ Cl ₂ /P	D1	20	94.8%	15	This
ANCMA	degradation				work
nanofibers	degradation				

TableS 3 Comparison of the developed g-C₃N₄/Bi₁₂O₁₇Cl₂/PANCMA nanofibers with the other reported photocatalytical materials for removal of OFL

Figure S1 The appearance of $g-C_3N_4/Bi_{12}O_{17}Cl_2$ (A), E-spun PANCMA (B) and $g-C_3N_4/Bi_{12}O_{17}Cl_2/PANCMA$ (C) nanofibers

Figure S2 Typical total ion chromatograms of desorption and degradation solution by photocatalytic degradation of OFL adsorbed on E-spun g- $C_3N_4/Bi_{12}O_{17}Cl_2(1:3)/PANCMA$ nanofibers

Figure S3 Typical characteristic MS fragment peaks of degradation products of OFL

Figure S4 Effect of different photocatalytical materials on the OFL degradation

Figure S5 Typical chromatograms of pond water (A), rive water (B), and lake water (C) before and after degradation (20 min of light irradiation) via E-spun g-C₃N₄/Bi₁₂O₁₇Cl₂(1:3)/PANCMA nanofibers. The spiked OFL concentration was 100 ng/mL.

Figure S6 Photocatalytic degradation of OFL (50 mL, 100 ng/mL) in various water samples over E-spun g- $C_3N_4/Bi_{12}O_{17}Cl_2(1:3)/PANCMA$ nanofibers

Figure S7 SEM images of E-spun g-C₃N₄/Bi₁₂O₁₇Cl₂(1:3)/PANCMA nanofibers (A) before and (B) after consecutive 20 cycle times of adsorption/photocatalytic degradation process

 $\label{eq:scheme1} \begin{array}{l} \mbox{Scheme1} \mbox{Possible photocatalytic degradation mechanism of OFL over the E-spun g-} \\ C_3N_4/Bi_{12}O_{17}Cl_2(1:3)/PANCMA nanofibers \end{array}$