Experimental Evidence for the Molecular Molybdenum Fluorides MoF to MoF₆: a matrix isolation and DFT investigation.

Ahmed K. Sakr,^(a) Howard V. Snelling,^(b) and Nigel A. Young^(a)*

- (a) Department of Chemistry and Biochemistry, The University of Hull, Kingston upon Hull, HU6 7RX, U.K.
- (b) Department of Physics and Mathematics, The University of Hull, Kingston upon Hull, HU6 7RX, U.K.

email: n.a.young@hull.ac.uk

Electronic Supplementary Information

Contents - Figures

Figure ESI-1. Badger's rule ($(r = (C/k)^{1/3} + d)$) plot of Mo-F bond length *r* vs $(1/k)^{1/3}$ for principal force constant f_r (left) and for the force constant derived from the totally symmetric mode $f_{tot symm}$ (right).

Figure ESI-2. Higher resolution (1.0 cm^{-1}) FTIR spectra of reaction products of atomic Mo in 1% F₂/Ar matrix with (a) the heated filament protected from F₂ using the Cu disc after deposition and annealing to 15 K, 20 and 25 K; and (b) without Cu disc after deposition; calculated

(B3LYP/def2tzvpp) and scaled spectra for MoF_6 at (c) 0.5 cm⁻¹, (d) 1 cm⁻¹ and 2 cm⁻¹ fwhm.

Figure ESI-3. FTIR spectra of reaction products of atomic Mo in 0.2% F₂/Ar matrix (a) after deposition; (b) after 10 mins visible light photolysis; (c) after 10 mins 200–410 nm photolysis; (d) after 10 mins broadband photolysis; (e) after further 10 mins visible light photolysis; (f) after 5 mins annealing at 15 K; (g) after 5 mins annealing at 20 K; (h) after 5 mins annealing at 25 K; (i) after 5 mins annealing at 30 K.

Figure ESI-4. FTIR absorbance and difference spectra of reaction products of atomic Mo in 0.2% F_2 /Ar matrix (a) after deposition; (b) after 5 mins annealing at 15 K; (c) after 5 mins annealing at 20 K; (d) after 5 mins annealing at 25 K; (e) after 10 mins visible light photolysis; (f) after 10 mins 200–410 nm photolysis; (g) after 10 mins broadband photolysis; (h) after further 10 mins visible light photolysis; (i) after 5 mins annealing at 25 K; (j) after 5 mins annealing at 30 K.

Figure ESI-5. FTIR absorbance and difference spectra of reaction products of atomic Mo in 2% F₂/Ar matrix (a) after deposition; (b) after 10 mins visible light photolysis; (c) after 10 mins 200–410 nm photolysis; (d) after 10 mins broadband photolysis; (e) after further 10 mins visible light photolysis; (f) after 5 mins annealing at 15 K; (g) after 5 mins annealing at 20 K; (h) after 5 mins annealing at 25 K; (i) after 5 mins annealing at 30 K.

Figure ESI-6. FTIR absorbance and difference spectra of reaction products of atomic Mo in 2% F₂/Ar matrix (a) after deposition; (b) after 5 mins annealing at 15 K; (c) after 5 mins annealing at 20 K; (d) after 5 mins annealing at 25 K; (e) after 10 mins visible light photolysis; (f) after 10 mins 200–410 nm photolysis; (g) after 10 mins broadband photolysis; (h) after further 10 mins visible light photolysis; (i) after 5 mins annealing at 25 K; (j) after 5 mins annealing at 30 K.

Figure ESI-7. Higher resolution (1.0 cm^{-1}) FTIR spectra of reaction products of atomic Mo (heated filament protected from F₂ using the Cu disc) in (a) 1% F₂/Ar matrix after deposition, broadband photolysis and annealing to 15 K, 20 and 25 K,;(b) in 2% F₂/Ar matrix; and calculated (B3LYP/def2tzvpp) and scaled spectra for (c) MoF₅; (d) MoF₄; and (e) MoF₃ at 0.5 cm⁻¹ fwhm. Experimental features due to MoF₆ and MoF₂ are marked.

Figure ESI-8. FTIR spectra of reaction products of atomic Mo in 0.5% F₂/Ar matrix with the heated filament not protected from F₂ exposure: (a) after deposition; (b) after 10 mins visible light photolysis; (c) after 10 mins 200–410 nm photolysis; (d) after 10 mins broadband photolysis; (e) after further 10 mins visible light photolysis; (f) after 5 mins annealing at 15 K; (g) after 5 mins annealing at 20 K; (h) after 5 mins annealing at 25 K; (i) after 5 mins annealing at 30 K.

Contents - Tables

Table ESI-1. Calculated (B3LYP/def2tzvpp) geometries, vibrational modes and SVFF force constants of molybdenum fluoride molecules.

Table ESI-2. Calculated (B3LYP/def2tzvpp) vibrational modes and SVFF *F* and *G* matrix elements and principal force constants (f_r) and interaction force constants (f_{rr} and $f_{rr'}$) derived from them.

Table ESI-3. Comparison of MoF₆ force constants

Table ESI-4. Cartesian coordinates and energies of minimised structures at the B3LYP/def2tzvpp level. (No negative frequencies were reported for these structures)

Figure ESI-1. Badger's rule (($r = (C/k)^{1/3} + d$)) plot of Mo-F bond length r vs $(1/k)^{1/3}$ for principal force constant f_r (left) and for the force constant derived from the totally symmetric mode $f_{tot symm}$ (right).

Figure ESI-2. Higher resolution (1.0 cm^{-1}) FTIR spectra of reaction products of atomic Mo in 1% F₂/Ar matrix with (a) the heated filament protected from F₂ using the Cu disc after deposition and annealing to 15 K, 20 and 25 K; and (b) without Cu disc after deposition; calculated (B3LYP/def2tzvpp) and scaled spectra for MoF₆ at (c) 0.5 cm⁻¹, (d) 1 cm⁻¹ and 2 cm⁻¹ fwhm.

Figure ESI-3. FTIR spectra of reaction products of atomic Mo in 0.2% F₂/Ar matrix (a) after deposition; (b) after 10 mins visible light photolysis; (c) after 10 mins 200–410 nm photolysis; (d) after 10 mins broadband photolysis; (e) after further 10 mins visible light photolysis; (f) after 5 mins annealing at 15 K; (g) after 5 mins annealing at 20 K; (h) after 5 mins annealing at 25 K; (i) after 5 mins annealing at 30 K.

Figure ESI-4. FTIR absorbance and difference spectra of reaction products of atomic Mo in 0.2% F_2 /Ar matrix (a) after deposition; (b) after 5 mins annealing at 15 K; (c) after 5 mins annealing at 20 K; (d) after 5 mins annealing at 25 K; (e) after 10 mins visible light photolysis; (f) after 10 mins 200–410 nm photolysis; (g) after 10 mins broadband photolysis; (h) after further 10 mins visible light photolysis; (i) after 5 mins annealing at 25 K; (j) after 5 mins annealing at 30 K.

Figure ESI-5. FTIR absorbance and difference spectra of reaction products of atomic Mo in 2% F₂/Ar matrix (a) after deposition; (b) after 10 mins visible light photolysis; (c) after 10 mins 200–410 nm photolysis; (d) after 10 mins broadband photolysis; (e) after further 10 mins visible light photolysis; (f) after 5 mins annealing at 15 K; (g) after 5 mins annealing at 20 K; (h) after 5 mins annealing at 25 K; (i) after 5 mins annealing at 30 K.

Figure ESI-6. FTIR absorbance and difference spectra of reaction products of atomic Mo in 2% F₂/Ar matrix (a) after deposition; (b) after 5 mins annealing at 15 K; (c) after 5 mins annealing at 20 K; (d) after 5 mins annealing at 25 K; (e) after 10 mins visible light photolysis; (f) after 10 mins 200–410 nm photolysis; (g) after 10 mins broadband photolysis; (h) after further 10 mins visible light photolysis; (i) after 5 mins annealing at 25 K; (j) after 5 mins annealing at 30 K.

Figure ESI-7. Higher resolution (1.0 cm^{-1}) FTIR spectra of reaction products of atomic Mo (heated filament protected from F₂ using the Cu disc) in (a) 1% F₂/Ar matrix after deposition, broadband photolysis and annealing to 15 K, 20 and 25 K,;(b) in 2% F₂/Ar matrix; and calculated (B3LYP/def2tzvpp) and scaled spectra for (c) MoF₅; (d) MoF₄; and (e) MoF₃ at 0.5 cm⁻¹ fwhm. Experimental features due to MoF₆ and MoF₂ are marked.

Figure ESI-8. FTIR spectra of reaction products of atomic Mo in 0.5% F₂/Ar matrix with the heated filament not protected from F₂ exposure: (a) after deposition; (b) after 10 mins visible light photolysis; (c) after 10 mins 200–410 nm photolysis; (d) after 10 mins broadband photolysis; (e) after further 10 mins visible light photolysis; (f) after 5 mins annealing at 15 K; (g) after 5 mins annealing at 20 K; (h) after 5 mins annealing at 25 K; (i) after 5 mins annealing at 30 K.

Table ESI-1. Calculated (B3LYP/def2tzvpp) geometries, vibrational modes and SVFF force constants of molybdenum fluoride molecules.

Assignments	Molecular	Electronic	Mo-F	F-Mo-F	Vibrational modes	Force constants
	structure	ground state	Bond	Bond angles	cm ⁻¹	N m ⁻¹
			length /Å		(IR intensity /km mole ⁻¹)	
MoF ₆	Octahedral (O _h)	¹ A _{1g}	1.829	90°	A _{1g} 739.0 (0.00)	$f_r = 474.0$
					T _{1u} 734.2 (339 x 3)	<i>f</i> _{rr} = 24.46
					E _g 644.2 (0.00 x 2)	<i>f</i> _{rr} ′ = 39.38
					T _{2g} 307.6 (0.00 x 3)	
					T _{1u} 256.5 (33.2 x 3)	
					T _{2u} 118.7 (0.00 x 3)	
MoF₅	Distorted	² A	1.801	110.5° (eq)	761.5 (244) (eq str)	
	trigonal		(eq)	125.8° (eq)	726.8 (0.004) (sym str	
	bipyramidal		1.819	123.7° (eq)	breathing mode)	
	(<i>C</i> ₁)		(eq)	179.4° (ax)	689.5 (355) (axial	
			1.822	90.0°	asymmetric str)	
			(eq)	90.2°	650.0 (228) (eq str)	
			1.876	89.7°	626.5 (0.066) (asym str	
			(ax)	90.0°	breathing mode)	
			1.876	90.2°	278.1 (7.89)	
			(ax)	89.7°	236.3 (8.58)	
					217.1 (18.9)	
					211.2 (0.40)	
					193.3 (28.9)	
					90.1 (8.61)	
					31.7 (32.1)	
MoF ₄	Tetrahedral (T_d)	³ A ₂	1.860	109.47°	A ₁ 695.2 (0.00)	$f_r = 442.5$
					T ₂ 678.8 (186 x 3)	<i>f</i> _{rr} = 32.81
					E 138.5 (0.00 x 2)	
					T ₂ 124.9 (32.3 x 3)	
MoF ₃	Trigonal planar	⁴ A ₂ '	1.861	120°	E' 692.3 (198 x 2)	<i>f</i> _{<i>r</i>} = 440.8
	(D _{3h})				A1' 662.6 (0.000)	<i>f</i> _{rr} = 25.30
					E' 176.8 (7.11 x 2)	
					A ₂ " 142.1 (16.6)	
MoF ₂	Bent (C _{2v})	⁵ B ₂	1.879	132°	B ₂ 665.5 (198)	<i>f</i> _r = 394.2
					A1 635.0 (59.5)	<i>f</i> _{rr} = 32.89
					A1 151.6 (8.84)	
MoF	(<i>C</i> ∞ _ν)	6Σ+	1.898		Σ+ 620.1 (148)	<i>f</i> _{<i>r</i>} = 360.3

	mode	B3LYP	G matrix elements [*]	G	F	F matrix	f _r	f _{rr}	frr'
		def2tzvpp		g ⁻¹	N m ⁻¹	elements	N m ⁻¹	N m ⁻¹	Ν
		v _{Mo-F} cm ⁻¹							m ⁻¹
MoF	Σ+	620.0	μ_F + μ_{Mo}	0.062850	360.3	f _r	360.3		
MoF ₂	A ₁	635.0	$\mu_{F} + \mu_{Mo}(1 + \cos \alpha)$	0.055628	427.1	$f_r + f_{rr}$	394.2	32.89	
	B ₂	655.5	$\mu_{F} + \mu_{Mo}(1 - \cos \alpha)$	0.070072	361.3	$f_r - f_{rr}$	394.2	32.89	
MoF ₃	A1'	662.6	μ _F	0.052636	491.4	$f_r + 2f_{rr}$	440.8	25.30	
	Ε'	692.3	$\mu_{F} + (^{3}/_{2})\mu_{Mo}$	0.067957	415.5	$f_r - f_{rr}$	440.8	25.30	
MoF ₄	A ₁	695.2	μ_{F}	0.052636	541.0	$f_r + 3f_{rr}$	442.5	32.81	
	T ₂	678.8	μ_{F} + (⁴ / ₃) μ_{Mo}	0.066255	409.7	$f_r - f_{rr}$	442.5	32.81	
MoF ₆	A _{1g}	739.0	μ_{F}	0.052636	611.3	$\frac{f_r + 4f_{rr} + f_{rr'}}{f_{rr'}}$	474.0	24.46	39.38
	Eg	644.2	μ_{F}	0.052636	464.5	$\frac{f_r - 2f_{rr} + f_{rr'}}{f_{rr'}}$	474.0	24.46	39.38
	T _{1u}	734.2	μ _F + 2μ _{Mo}	0.073064	434.7	$f_r - f_{rr'}$	474.0	24.46	39.38

Table ESI-2. Calculated (B3LYP/def2tzvpp) vibrational modes and SVFF *F* and *G* matrix elements and principal force constants (f_r) and interaction force constants (f_{rr} and $f_{rr'}$) derived from them.

* μ_F and μ_{M_0} are the reciprocal masses of ¹⁹F and ⁹⁸Mo. $F = ((\nu/130.283)^2/G)$. f_r is the principal force constant and f_{rr} the interaction force constant. For MoF₆, f_{rr} is the interaction force constant for the stretching modes *cis* to each other, and $f_{rr'}$ for those trans to each other. (K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, Sixth Edition*, John Wiley & Sons, Inc., 2008.)

Table ESI-3. Comparison of MoF ₆ force constant
--

f _r	frr	frr'	Ref
474.0	24.5	39.4	(a)
508.0	24.6	4.0	(b)
473	24.4	35	(c)
494	23	29	(d)
508.3	25.33	5.0	(e)

(a) this work

(b) C. W. F. T. Pistorius, J. Chem. Phys., 1958, 29, 1328-1332.

(c) H. H. Claassen, J. Chem. Phys., 1959, **30**, 968-972.

(d) R. S. McDowell, R. J. Sherman, L. B. Asprey and R. C. Kennedy, J. Chem. Phys., 1975, 62, 3974-3978.

(e) F. Ucun and M. G. Şengül, Z. Naturforsch., A: Phys. Sci., 2005, 60, 819-822.

Table ESI-4. Cartesian coordinates and energies of minimised structures at the B3LYP/def2tzvpp. (No negative frequencies were reported for these structures)

MoF	$6\Sigma^+$
-----	-------------

Centre	Atomic	Atomic Type	Coordinates (Å)		
Number	Number		Х	Y	Z
1	42	0	0.000000	0.000000	0.334978
2	9	0	0.000000	0.000000	-1.563229

E(UB3LYP) = -168.075224090 h

Zero-point correction=	0.001413 (Hartree/Particle)
Thermal correction to Energy=	0.003922
Thermal correction to Enthalpy=	0.004867
Thermal correction to Gibbs Free Ene	rgy= -0.023251
Sum of electronic and zero-point Ener	gies= -168.073811
Sum of electronic and thermal Energie	es= -168.071302
Sum of electronic and thermal Enthalp	bies= -168.070357
Sum of electronic and thermal Free En	nergies= -168.098476

 $MoF_2 {}^5B_2$

Centre	Atomic	Atomic Type	Coordinates (Å)		
Number	Number		Х	Y	Z
1	42	0	0.000000	0.000000	0.229137
2	9	0	0.000000	-1.716548	-0.534652
3	9	0	0.000000	1.716548	-0.534652

E(UB3LYP) = -268.043295656 h

Zero-point correction=	0.003308 (Hartree/Particle)
Thermal correction to Energy=	0.007050
Thermal correction to Enthalpy=	0.007994
Thermal correction to Gibbs Free Ene	ergy= -0.025125
Sum of electronic and zero-point Ene	rgies= -268.039988
Sum of electronic and thermal Energi	es= -268.036245
Sum of electronic and thermal Enthal	pies= -268.035301
Sum of electronic and thermal Free E	nergies= -268.068421

MoF₃ ⁴A₂'

Centre	Atomic	Atomic Type		Coordinates (Å)	
Number	Number		Х	Y	Z
1	42	0	0.000000	0.000000	0.000000
2	9	0	0.000000	1.861323	0.000000
3	9	0	-1.611953	-0.930661	0.000000
4	9	0	1.611953	-0.930661	0.000000

E(UB3LYP) = -368.016658598 h

Zero-point correction=	0.005793 (Hartree/Particle)
Thermal correction to Energy=	0.010839
Thermal correction to Enthalpy=	0.011783
Thermal correction to Gibbs Free Ene	ergy= -0.023698
Sum of electronic and zero-point Ener	rgies= -368.010866
Sum of electronic and thermal Energie	es= -368.005820
Sum of electronic and thermal Enthal	pies= -368.004876
Sum of electronic and thermal Free E	nergies= -368.040357

MoF4 ³A₂

Centre	Atomic	Atomic Type	Coordinates (Å)		
Number	Number		Х	Y	Z
1	42	0	0.000000	0.000000	0.000000
2	9	0	1.074031	1.074031	1.074031
3	9	0	-1.074031	-1.074031	1.074031
4	9	0	-1.074031	1.074031	-1.074031
5	9	0	1.074031	-1.074031	-1.074031

E(UB3LYP) = -467.956986927 h

Zero-point correction=	0.007708 (Hartree/Particle)
Thermal correction to Energy=	0.014410
Thermal correction to Enthalpy=	0.015355
Thermal correction to Gibbs Free Energy	gy= -0.023433
Sum of electronic and zero-point Energ	ies= -467.949279
Sum of electronic and thermal Energies	-467.942576
Sum of electronic and thermal Enthalpi	es= -467.941632
Sum of electronic and thermal Free End	ergies= -467.980419

MoF₅²A

Centre	Atomic	Atomic Type	Coordinates (Å)		
Number	Number		Х	Y	Z
1	42	0	0.000050	-0.029727	0.006652
2	9	0	-0.000667	0.916429	-1.550663
3	9	0	-1.876054	-0.023321	0.000535
4	9	0	-0.000732	1.096769	1.435371
5	9	0	1.876194	-0.021563	0.000498
6	9	0	0.001024	-1.829588	0.083217

E(UB3LYP) = -567.878041967 h

Zero-point correction=	0.010735 (Hartree/Particle)
Thermal correction to Energy=	0.018388
Thermal correction to Enthalpy=	0.019333
Thermal correction to Gibbs Free Ene	ergy= -0.024005
Sum of electronic and zero-point Ene	ergies= -567.867307
Sum of electronic and thermal Energi	les= -567.859653
Sum of electronic and thermal Enthal	pies= -567.858709
Sum of electronic and thermal Free E	nergies= -567.902047

MoF₆ ¹A_{1g}

Centre	Atomic	Atomic Type	Coordinates (Å)		
Number	Number		Х	Y	Ζ
1	42	0	0.000000	0.000000	0.000000
2	9	0	0.000000	0.000000	1.829184
3	9	0	0.000000	1.829184	0.000000
4	9	0	-1.829184	0.000000	0.000000
5	9	0	0.000000	0.000000	-1.829184
6	9	0	0.000000	-1.829184	0.000000
7	9	0	1.829184	0.000000	0.000000

E(RB3LYP) = -667.789350335 h

Zero-point correction=	0.014303 (Hartree/Particle)
Thermal correction to Energy=	0.022570
Thermal correction to Enthalpy=	0.023514
Thermal correction to Gibbs Free Ener	-0.016453
Sum of electronic and zero-point Energy	gies= -667.775047
Sum of electronic and thermal Energie	s= -667.766781
Sum of electronic and thermal Enthalp	ies= -667.765837
Sum of electronic and thermal Free En	ergies= -667.805804

Mo $^{7}S_{3}$	
E(UB3LYP) = -68.1232861644	
Zero-point correction=	0.000000 (Hartree/Particle)
Thermal correction to Energy=	0.001416
Thermal correction to Enthalpy=	0.002360
Thermal correction to Gibbs Free Energy	gy= -0.018318
Sum of electronic and zero-point Energ	ies= -68.123286
Sum of electronic and thermal Energies	-68.121870
Sum of electronic and thermal Enthalpi	es= -68.120926
Sum of electronic and thermal Free Ene	ergies= -68.141604

 $F_2 \ ^1\Sigma_g ^{+}$

Centre	Atomic	Atomic Type	Coordinates (Å)		
Number	Number		Х	Y	Z
1	9	0	3.446093	1.125828	0.000000
2	9	0	2.049536	1.125828	0.000000

E(RB3LYP) = -199.599540492 h Zero-point correction=

0 002387 (Hartree/Particle)

Zero-point correction-	0.002587 (Hartiee/Farticle)
Thermal correction to Energy=	0.004778
Thermal correction to Enthalpy=	0.005722
Thermal correction to Gibbs Free Ener	rgy= -0.017231
Sum of electronic and zero-point Ener	gies= -199.597154
Sum of electronic and thermal Energie	es= -199.594763
Sum of electronic and thermal Enthalp	oies= -199.593819
Sum of electronic and thermal Free Er	nergies= -199.616771

$Ar \ ^1S_0$

E(RB3LYP) = -527.549964127 h	
Zero-point correction=	0.000000 (Hartree/Particle)
Thermal correction to Energy=	0.001416
Thermal correction to Enthalpy=	0.002360
Thermal correction to Gibbs Free Energy	gy= -0.015212
Sum of electronic and zero-point Energ	gies= -527.549964
Sum of electronic and thermal Energies	s= -527.548548
Sum of electronic and thermal Enthalpi	es= -527.547604
Sum of electronic and thermal Free Ene	ergies= -527.565176

ArMoF (linear) ${}^{6}\Sigma^{+}$

Centre	Atomic	Atomic Type	Coordinates (Å)		
Number	Number		Х	Y	Z
1	42	0	0.000000	0.000000	0.487129
2	9	0	0.000000	0.000000	2.399874
3	18	0	0.000000	0.000000	-2.336572

E(UB3LYP) = -695.629297831 h

Zero-point correction=	0.001758 (Hartree/Particle)
Thermal correction to Energy=	0.006744
Thermal correction to Enthalpy=	0.007688
Thermal correction to Gibbs Free Ene	rgy= -0.029398
Sum of electronic and zero-point Ener	rgies= -695.627539
Sum of electronic and thermal Energie	es= -695.622554
Sum of electronic and thermal Enthaly	pies= -695.621610
Sum of electronic and thermal Free En	nergies= -695.658695

	П	П	Σ^+	Σ^+
Frequencies /cm ⁻¹	36.6160	36.6160	97.8595	600.7694
IR Intensity / km mole ⁻¹	2.7210	2.7210	2.0407	158.5581

ArMoF (bent) ⁶A'

Centre	Atomic	Atomic Type	Coordinates (Å)		
Number	Number		Х	Y	Z
1	42	0	0.000000	0.488575	0.000000
2	9	0	0.140952	2.395452	0.000000
3	18	0	-0.070476	-2.337735	0.000000

E(UB3LYP) = -695.629388039 h

Zero-point correction=	0.001799 (Hartree/Particle)
Thermal correction to Energy=	0.006287
Thermal correction to Enthalpy=	0.007231
Thermal correction to Gibbs Free Ene	ergy= -0.027537
Sum of electronic and zero-point Ener	rgies= -695.627589
Sum of electronic and thermal Energie	es= -695.623101
Sum of electronic and thermal Enthalp	pies= -695.622157
Sum of electronic and thermal Free En	nergies= -695.656925

	A'	A'	A'
Frequencies /cm ⁻¹	87.3607	97.8393	604.3087
IR Intensity / km mole ⁻¹	2.8508	1.9473	158.6219