Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Third-Order Nonlinear Optical Property Contrast as Self-

Assembly Recognition for Nanorings⊃C₆₀

Nana Ma,*a Wenyue Guo,a Zhu Zhub and Guisheng Zhang*a

^aSchool of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Normal University, Xinxiang, Henan, 453007, China. ^bXiangyang Public Inspection and Testing Center, Xiangyang, Hubei, 441000, China.

Content

Fig. S1. The optimized structures of nanorings in top view and side view.

Fig. S2. The HOMO and LUMO composition and HOMO-LUMO gap (E_{H-L}) of nanorings $\supset C_{60}$.

Fig. S3. The electron density difference maps (EDDMs) of the ground state and the excited state of the nanorings corresponding to the primary absorption.

Fig. S4. The curve of γ values with the number of states by SOS method.

Table S1. The TDDFT results calculated at ω B97XD/6–31+G(d) level (absorption wavelength (λ /nm), transition energy (ΔE /eV), and oscillator strength (f) of major molecular orbital transitions) for nanorings.

Table S2. The first hyperpolarizabilities (β) of nanorings and nanorings $\supset C_{60}$.

Tabe S3. The frequency-dependent second hyperpolarizabilities $\gamma(-\omega; \omega, 0, 0)$ of nanorings and nanorings $\supset C_{60}$.

Table S4. The third-order NLO coefficients of nanorings and nanorings $\supseteq C_{60}$ in dichloroethane.

Fig. S1. The optimized structures of nanorings in top view and side view.

Fig. S2. The HOMO and LUMO composition and HOMO-LUMO gap ($E_{\text{H-L}}$) of nanorings $\supset C_{60}$.

Fig. S3. The electron density difference maps (EDDMs) of the ground state and the excited state of the nanorings corresponding to the primary absorption.

Fig. S4. The curve of γ values with the number of states by SOS method.

Table S1. The TDDFT results calculated at ω B97XD/6–31+G(d) level (absorption wavelength (λ /nm), transition energy (ΔE /eV), and oscillator strength (*f*) of major molecular orbital transitions) for nanorings.

nanoring	Transition State	$\Delta E/eV$	λ/nm	f
	S0-S2	3.6842	336.53	2.4387
1 a	S0-S3	3.6843	336.52	2.4560
	S0-S31	5.7183	216.82	0.8775
	S0-S2	3.8449	322.47	2.5150
1b	S0-S3	3.8451	322.45	2.5131
	S0-S41	6.0073	206.39	0.9747
	S0-S2	3.2835	377.59	1.9473
2a	S0-S3	3.6043	343.99	2.5293
	S0-S34	5.6103	220.99	0.7706
	S0-S2	3.6007	344.34	2.7280
	S0-S3	3.6209	342.41	2.4717
2b	S0-S8	4.6695	265.52	0.7442
	S0-S33	5.6685	218.73	0.7710
	S0-S35	5.6998	217.53	0.9009
	S0-S2	4.1088	301.75	2.1955
	S0-S3	4.1088	301.75	2.1956
	S0-S38	6.1909	200.27	1.2291
3 a	S0-S45	6.3658	194.77	0.8072
	S0-S46	6.3658	194.77	0.8068
	S0-S51	6.4543	192.10	0.9486
	S0-S52	6.4543	192.09	0.9487
	S0-S2	3.6128	343.18	2.5611
50	S0-S3	3.6128	343.18	2.5610

	a.u.				esu (×10-30)	
	$\beta_{\rm x}$	$eta_{ m y}$	β_{z}	eta^{a}	β	
1a	0	0	0	0	0	
1b	156	-399	750	864	7	
2a	10	-14	-10	20	0.2	
2b	0	0	0	0	0	
3a	0	0	0	0	0	
3b	0	0	-9034	9034	78	
C ₆₀	0	0	0	0	1	
1a ⊃ C ₆₀	-4353	-1973	4481	6551	57	
$1b \supseteq C_{60}$	1936	-342	-1269	2340	20	
2a ⊃ C ₆₀	1018	2304	-636	2598	22	
2b ⊃ C ₆₀	9097	4145	-1414	10096	87	
$3a \supseteq C_{60}$	16	14	14	25	0.2	
$3b \supseteq C_{60}$	-68	-11	3476	3476	30	

Table S2. The first hyperpolarizabilities of nanorings and nanorings $\supseteq C_{60}$.

^athe β were calculated by software Multiwfn in the sum-overstates (SOS) method, the total magnitude of β can be measured by eqs.

$$\begin{split} \beta_{ABC}(-\omega_{\sigma};\omega_{1},\omega_{2}) &= \mathcal{P}[A(-\omega_{\sigma});B(\omega_{1}),C(\omega_{2})] \sum_{i \neq 0} \sum_{j \neq 0} \frac{\mu_{0i}^{A} \overline{\mu_{ij}^{B}} \mu_{j0}^{C}}{(\Delta_{i} - \omega_{\sigma})(\Delta_{i} - \omega_{2})}; \\ \mu_{ij}^{A} &= < i |\hat{\mu}^{A}| j > ; \quad \overline{\mu_{ij}^{A}} = \mu_{ij}^{A} - \mu_{00}^{A} \delta_{ij}; \quad \omega_{\sigma} = \sum_{i} \omega_{i} \end{split}$$

	esu (×10 ⁻³⁶)				
_	γ(ω=0.06 a.u., 760 nm)	γ(ω=0.07 a.u., 650 nm)	γ(ω=0.08 a.u., 570 nm)		
1a	1151	1214	1280		
1b	320	379	521		
2a	1400	1457	1480		
2b	649	662	778		
3a	656	780	967		
3b	350	550	919		
1a ⊃ C ₆₀	4297	4928	5853		
1b ⊃ C ₆₀	1506	1683	1906		
2a ⊃ C ₆₀	4170	5093	6677		
2b ⊃ C ₆₀	3417	3866	4473		
$3a \supseteq C_{60}$	3504	3896	4408		
$3b \supseteq C_{60}$	5531	6406	7720		

Table S3. The frequency-dependent second hyperpolarizabilities $\gamma(-\omega; \omega, 0, 0)$ of nanorings and nanorings $\supset C_{60}$.

Table S4. The third-order NLO coefficients of nanorings and nanorings $\supset C_{60}$ in dichloroethane.

		a.u.			esu (×10 ⁻³⁶)	Da
	$\gamma_{\rm x}$	γ_{y}	γ_z	γ	γ	- K"
1a	-2.64	-2.57	-0.66	3.74	1886	1.92
1b	-0.83	-0.83	-0.49	1.27	638	2.20
2a	-2.66	-2.06	-1.07	3.53	1780	1.48
2b	-0.97	-2.66	-1.19	3.07	1547	2.34
3 a	-1.48	-1.48	-0.81	2.25	1131	2.63
3b	-0.06	-0.10	-0.49	0.50	251	1.48
C ₆₀	-2.57	-2.45	-2.53	4.36	2198	1.54
1a ⊃ C ₆₀	-5.13	-4.93	-1.36	7.24	3647	1.18
$1b \supseteq C_{60}$	-2.16	-1.41	-0.67	2.66	1342	1.19
2a ⊃ C ₆₀	-2.53	-5.06	-0.75	5.70	2871	1.07
$2b \supseteq C_{60}$	-2.67	-3.85	-0.94	4.78	2408	0.96
$3a \supseteq C_{60}$	-4.78	-4.85	-1.42	6.95	3501	1.31
3b ⊃ C ₆₀	-5.23	-5.19	-1.96	7.62	3840	0.98

*^a*the magnification of γ value in solution divided by γ value in gas phase.