Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Synthesis of axially chiral N-aryl benzimidazoles via chiral

phosphoric acid catalyzed enantioselective oxidative aromatization

Jin-fang Chen ^a, Jin-yi Shi ^a, Cong-cong Yin ^a, Xin Cui ^b, Guang-xun Li ^{b,*}, Zhuo Tang ^{b,*}, Jin-zhong Zhao ^{a,*}

^a College of Art and Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China ^b Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041(China)

Content

1.	General experimental information2
2.	Preparation of <i>o</i> -alkoxyl phenylamines
3.	General procedure for the synthesis of <i>N</i> -aryl- <i>o</i> -phenylenediamines3
4.	Optimization of the reaction conditions5
5.	General procedure for the preparation of products 46
6.	Gram-scale procedure for the preparation of products 4c6
7.	Aromatic aldehyde investigated under the optimal reaction condition7
8.	Characterization of the selected new products8
9.	NMR spectrum of the obtained new products23
10.	HPLC analysis spectrums

1. General experimental information.

All reactions that required airless conditions were carried by standard procedures under nitrogen atmosphere. Commercially available reagents from Tansoole and Adamas-beta were used as received. The solvents were dried by distillation over the appropriate drying reagents. All chemical reagents were obtained from commercial suppliers and used without further purification. All unknown compounds are characterized by ¹H NMR, ¹³C NMR, HRMS.

Thin-layer chromatography (TLC) was performed using glass-backed silica gel (250 im) plates, and flash chromatography utilized 230-400 mesh silica gel from Scientific Adsorbents. Products were visualized by UV light. Melting points were measured on a Meltemp melting point apparatus and were not corrected. ¹H NMR spectra were recorded on commercial instruments (400 MHz or 600 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.28$). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and, assignment. ¹³C NMR spectra were collected on commercial instruments (101 MHz or 151 MHz) with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$). Mass spectra were recorded on a ThermoQuest Finnigan LCQDECA system equipped with an ESI source. Enantioselectivities were analyzed on HPLC with chiral columns. Optical rotations were measured on an Autopol IV Automatic Polarimeter at the sodium D-line (589 nm), unless otherwise indicated, using a Type 40T TempTrolTM cell of 1 dm path length and reported as follows: $[\alpha]_D^{25.3}$ (c in g per 100 mL, CH₂Cl₂).

2. Preparation of o-alkoxyl phenylamines

Aminophenol (10 mmol) and NaH (30 mmol) were suspended in dry DMF (10 mL). The corresponding 1-iodopropane (15 mmol) was added dropwise and the mixture was then stirred for 24 h at room temperature. The reaction was quenched by adding distilled water and the aqueous layer was extracted with ethyl acetate. Collected organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The pure product was obtained by flash chromatography over silica gel with ethyl acetate/petroleum ether as eluent to afford the desired **5r**. ¹ Other *o*-alkoxyl phenylamines were prepared according to this method.

3. General procedure for the synthesis of N-aryl-o-phenylenediamines

A reaction flask was charged with the aryl fluoride **5'** (1.0 eq, 10 mmol), the aryl amines **5** (1.0 eq, 10 mmol), and triethylamine (3.0 eq, 30 mmol). After addition, the system was heated at 120 °C with stirring under a nitrogen atmosphere. The reaction was monitored by TLC. When the reaction was completed, the crude reaction mixture was allowed to reach room temperature and the mixture was diluted with H₂O. The resulting mixture was extracted with ethyl acetate. The aqueous phase was extracted three times with ethyl acetate. The combined organic layers were washed with two portions of a saturated solution of brine and then dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure to afford the rude **5''**, which could be utilized without purification.

A mixture of **5**" (1.0 eq), Fe powder (6.0 eq), and acetic acid (12 mL) were stirred at room temperature. After stirring for 1 h, the solvent was eliminated and saturated sodium bicarbonate aqueous solution and ethyl acetate were added and the layers were

separated. The organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, and evaporated under reduced pressure. The residue was purified by flash chromatography over silica gel with ethyl acetate/petroleum ether as eluent to afford *N*-aryl-*o*-phenylenediamines $1.^2$

A reaction mixture of 1-fluoro-2-nitrobenzene (776 mg, 5.5 mmol) and 1,2diaminobenzene (542 mg, 5 mmol) in DMSO (10 mL) was stirred at 130 °C for 8 h. After cooling to room temperature, it was quenched with H₂O (10 mL) and extracted with ethyl acetate (3×20 mL). The combined organic layer was washed with brine (3×10 mL), dried over anhydrous Na₂SO₄, concentrated, and purified through silica gel chromatography ethyl acetate/petroleum ether to give N¹-(2-nitrophenyl)benzene-1,2diamine (1i') as a reddish-brown solid (951 mg, 83% yield).³

To a stirred solution of a selected amine (1 mmol, 1 equiv.) and $(Boc)_2O$ (1 mmol, 1 equiv.) in CH₂Cl₂ (0.2 mL) was added NBS (0.1 mmol, 0.1 equiv.) or Br₃CCOCBr₃ (0.1 mmol, 0.1 equiv.) at room temperature. The mixture was stirred for the indicated time and the progress was monitored using TLC. After completion, the solvent was removed under reduced pressure and the product was purified by flash column chromatography (petroleum ether /ethyl acetate 15:1 to 10:1).⁴

4. Optimization of the reaction conditions

C C	NH ₂	+		5q	ons ⁱ Pr-0	
1 [a	_R _0_0 _P ^{P_} O ^l _0	C1: R=phenant C2: R=2,4,6-(<i>i</i> -F C3: R=1-pyreny C4: R=4-bypher C5: R=2-bypher C6: R=9-anthra C7: R= 3,5-CF ₃	hrenyl Pr) ₃ Ph I nyl acenyl -Ph	− C8 : R=4-biph C9 : R=2,4,6- H	a nenyl (<i>i</i> -Pr)₃Ph
Entry ^a	T (°C)	Cat.	Add.	Sol.	Yield ^b (%)	Ee ^c (%)
1	15	C1	3 Å MS	toluene	75	66
2	15	C2	3 Å MS	toluene	68	50
3	15	C3	3 Å MS	toluene	66	54
4	15	C4	3 Å MS	toluene	64	54
5	15	C5	3 Å MS	toluene	60	46
6	15	C6	3 Å MS	toluene	70	22
7	15	C7	3 Å MS	toluene	65	22
8	15	C8	3 Å MS	toluene	83	79
9	15	C9	3 Å MS	toluene	46	30
10	15	C8	4 Å MS	toluene	60	52
11	15	C8	5 Å MS	toluene	59	46
12	15	C8	$MgSO_4$	toluene	63	50
13	15	C8	3 Å MS	DCM	62	51
14	15	C8	3 Å MS	PhCl	66	57
15	15	C8	3 Å MS	CCl_4	79	64
16	15	C8	3 Å MS	CHCl ₃	58	41
17	15	C8	3 Å MS	PhF	60	55
18	15	C8	3 Å MS	PhBr	69	63
19	0	C8	3 Å MS	toluene	20	40
20	30	C8	3 Å MS	toluene	85	51
21	15	C8	3 Å MS	toluene	85	79
				(10 mol% H ₂ O)		
22	15	C8	3 Å MS	toluene	83	75
				(50 mol% H ₂ O)		
23	15	C8	-	toluene	61	66
24	15	C8	-	toluene	59	54
				(10 mol% H ₂ O)		

5. General procedure for the preparation of products 4

General Procedure for Syntheses of axially chiral 4: A reaction tube was charged with the **1** (0.01 mmol), aldehyde **2** (0.02 mmol), **CPA** (5 mmol%), phenylamine **5q** (0.01 mmol), 3Å MS (40 mg), and toluene (0.4 mL). Then the reaction mixture was stirred for 24 at 15 °C under a nitrogen atmosphere. After the completion of the reaction (TLC), the solvent was removed by a rotary evaporator. The crude products were purified by column chromatography eluting with petroleum ether/ethyl acetate (15:1-8:1) to give **4**.

General Procedure for Syntheses of racemic 4: To a stirred solution of **1** (0.1 mmol, 1 equiv), 2-ethoxyaniline **5q** (1 equiv), and aldehyde **2** (2 equiv) in toluene (1 mL) was added diphenyl phosphonate (5 mol%) and 3Å MS (50 mg) at rt, and then the mixture was stirred at 80 °C for overnight. After completion monitored by TLC, the resulting solution was concentrated in vacuo, and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 15:1-8:1) to afford racemic **4**.

6. Gram-scale procedure for the preparation of products 4c

The reaction was performed with a general procedure for syntheses of axially chiral **4**. The products were purified via silica gel column chromatography.

7. Aromatic aldehyde investigated under the optimal reaction condition

References

- Tomas Gonec, Iveta Zadrazilova, Eoghan Nevin, *et al.* Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides, *Molecules*, 2015, 20, 9767-9787.
- Shiqi Zhang, Ling Li, Guangxun Li, *et al.* Biomimetic alloxan-catalyzed intramolecular redox reaction with O₂: One-pot atom-economic synthesis of sulfinyl-functionalized benzimidazoles, *Tetrahedron Lett.*, **2021**, *62*, 152688-152691.
- Wenjun Chen, Yangxu Du, Manman Wang, et al. Synthesis of Benzo [4,5]imidazo[1,2-a]quinoxalines by I₂-Mediated sp³ C-H Amination, *Org. Chem. Front.*, 2020, 7, 3705-3708.
- 4. Oraphin Chantarasriwong, Banphot Jiangchareon, Christian Kurnia Putra, *et al.* NBS and Br₃CCOCBr₃ as highly efficient catalysts for the chemoselective N-tert-butyloxycarbonylation of amines, *Tetrahedron Lett.*, **2016**, *57*, 4807-4811.

8. Characterization of the selected new products

2-cyclohexyl-1-(2-isopropoxyphenyl)-1H-benzo[d]imidazole (4a)

Brown oil, yield: 85%. $[\alpha]_D^{25.3}$ = +0.56° (c 0.4, CH₂Cl₂), ee = 79%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 6.7 min (minor), t_{R2} = 12.2 min (major).

¹**H** NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 8.0 Hz, 1H), 7.50 – 7.43 (m, 1H), 7.28 (dd, J = 7.6, 1.4 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.11 (td, J = 15.1, 7.7 Hz, 3H), 6.94 (d, J = 8.0 Hz, 1H), 4.45 (dt, J = 12.1, 6.0 Hz, 1H), 2.58 (ddd, J = 11.8, 8.2, 3.6 Hz, 1H), 2.00 (d, J = 13.0 Hz, 1H), 1.97 – 1.88 (m, 1H), 1.88 – 1.71 (m, 3H), 1.66 (qd, J = 12.8, 3.5 Hz, 2H), 1.37 – 1.19 (m, 2H), 1.17 (d, J = 6.1 Hz, 3H), 1.15 – 1.10 (m, 1H), 1.02 (d, J = 6.0 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.21, 153.73, 142.77, 136.42, 130.29, 129.75, 125.52, 121.95, 121.72, 120.90, 118.89, 114.99, 109.96, 77.25, 77.04, 76.83, 70.77, 36.49, 32.56, 30.92, 26.21 (d, *J* = 10.8 Hz), 25.78, 21.69.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₂H₂₇N₂O 335.2118; Found 335.2113.

2-cyclohexyl-1-(2-methoxyphenyl)-1H-benzo[d]imidazole(4b)

Brown solid, yield: 82%, Mp: 77-79 °C. $[\alpha]_D^{25.3}$ = +0.55° (c 0.4, CH₂Cl₂), ee = 51%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 95:5; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 16.1 min (minor), t_{R2} = 22.4 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 7.82 (d, *J* = 8.0 Hz, 1H), 7.53 (td, *J* = 8.1, 1.4 Hz, 1H), 7.37 – 7.22 (m, 2H), 7.16 (dd, *J* = 14.4, 7.5 Hz, 3H), 6.97 (d, *J* = 8.0 Hz, 1H), 3.74 (s, 3H), 2.54 (dd, *J* = 9.4, 5.6 Hz, 1H), 1.93 (s, 1H), 1.91 – 1.79 (m, 3H), 1.76 (d, *J* = 10.8 Hz, 1H), 1.70 (dd, *J* = 10.9, 8.1 Hz, 1H), 1.41 – 1.11 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 160.08, 155.40, 142.69, 136.27, 130.58, 129.55, 124.41, 122.16, 121.91, 121.12, 119.01, 112.36, 109.93, 77.39, 77.07, 76.76, 55.59, 36.55, 32.38, 31.30, 26.24 (d, *J* = 3.6 Hz), 25.77.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₀H₂₃N₂O 307.1805; Found 307.1815.

2-cyclohexyl-1-(2-ethoxyphenyl)-1H-benzo[d]imidazole(4c)

Brown oil, yield: 87%. $[\alpha]_D^{25.3}$ = -1.8° (c 0.4, CH₂Cl₂), ee = 67%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 6.8 min (minor), t_{R2} = 11.6 min (major).

¹**H NMR (600 MHz, CDCl₃)** δ 7.79 (d, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.18 – 7.07 (m, 3H), 6.95 (d, *J* = 7.9 Hz, 1H), 4.07 – 3.92 (m, 2H), 2.57 (t, *J* = 11.6 Hz, 1H), 1.93 (dt, *J* = 37.7, 12.6 Hz, 2H), 1.82 (s, 2H), 1.78 – 1.62 (m, 3H), 1.37 – 1.17 (m, 3H), 1.15 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.08, 154.65, 142.50, 136.31, 130.48, 129.57, 124.61, 122.12, 121.90, 120.97, 118.88, 113.39, 109.98, 77.24, 77.03, 76.82, 64.08, 36.55, 32.44, 31.05, 26.23, 25.75, 14.44.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₀H₂₃N₂O 321.1961; Found 321.1952.

2-cyclohexyl-1-(2-propoxyphenyl)-1H-benzo[d]imidazole(4d)

Brown oil, yield: 74%. $[\alpha]_D^{25.3}$ = +10.3° (c 0.4, CH₂Cl₂), ee = 65%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 7.4 min (minor), t_{R2} = 11.9 min (major).

¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 7.33 – 7.19 (m, 2H), 7.19 – 7.05 (m, 3H), 6.93 (d, J = 8.0 Hz, 1H), 3.91 (dd, J = 15.4, 6.4

Hz, 1H), 3.81 (dd, *J* = 15.5, 6.6 Hz, 1H), 2.57 (t, *J* = 11.7 Hz, 1H), 2.03 – 1.78 (m, 4H), 1.78 – 1.59 (m, 3H), 1.59 – 1.34 (m, 2H), 1.25 (ddd, *J* = 50.4, 26.0, 13.1 Hz, 3H), 1.14 (d, *J* = 13.0 Hz, 1H), 0.68 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.04, 154.97, 142.67, 136.50, 130.47, 129.62, 124.71, 122.01, 121.76, 120.92, 118.92, 113.41, 109.95, 77.25, 77.03, 76.82, 70.08, 36.51, 32.41, 31.01, 26.20 (d, *J* = 6.3 Hz), 25.78, 22.24, 10.15.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₂H₂₇N₂O 335.2118; Found 335.2127.

1-(2-(benzyloxy)phenyl)-2-cyclohexyl-1H-benzo[d]imidazole(4e)

Brown solid, yield: 88%, Mp: 87-90 °C. $[\alpha]_D^{25.3}$ = +0.56° (c 0.4, CH₂Cl₂), ee = 63%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 95:5; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 8.3 min (minor), t_{R2} = 10.7 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 7.84 (d, *J* = 8.0 Hz, 1H), 7.54 – 7.45 (m, 1H), 7.35 (dd, *J* = 7.6, 1.5 Hz, 2H), 7.26 – 7.22 (m, 3H), 7.17 (dd, *J* = 14.2, 6.5 Hz, 3H), 7.11 – 7.03 (m, 2H), 6.98 (d, *J* = 7.9 Hz, 1H), 5.04 (d, *J* = 3.1 Hz, 2H), 2.63 (s, 1H), 1.96 – 1.84 (m, 3H), 1.82 – 1.73 (m, 2H), 1.72 – 1.64 (m, 1H), 1.41 – 1.26 (m, 2H), 1.26 – 1.12 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 160.09, 154.46, 142.71, 136.46, 136.06, 130.55, 129.80, 128.50, 127.92, 126.75, 124.98, 122.18, 121.94, 121.52, 119.05, 114.20, 110.02, 77.34 (d, *J* = 11.5 Hz), 77.08, 76.76, 70.31, 36.55, 32.53, 31.02, 26.22 (d, *J* = 4.6 Hz), 25.78.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₆H₂₇N₂O 383.2118; Found 383.2130.

2-cyclohexyl-1-(2-(cyclohexylmethoxy)phenyl)-1H-benzo[d]imidazole(4f)

Brown oil, yield: 81%. $[\alpha]_D^{25.3} = -22.38^\circ$ (c 0.4, CH₂Cl₂), ee = 59%; HPLC analysis:

Daicel Chiralpak IC-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 6.0 min (minor), t_{R2} = 9.3 min (major).

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.9 Hz, 1H), 7.49 (dd, J = 11.3, 4.5 Hz, 1H), 7.32 (dd, J = 8.0, 1.6 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.13 (dd, J = 14.9, 7.8 Hz, 3H), 6.94 (d, J = 8.0 Hz, 1H), 3.76 (dd, J = 9.0, 6.0 Hz, 1H), 3.71 (ddd, J = 38.5, 9.0, 6.0 Hz, 2H), 3.66 (dd, J = 8.9, 5.9 Hz, 1H), 2.73 – 2.20 (m, 2H), 2.74 – 2.51 (m, 1H), 2.20 – 1.72 (m, 7H), 2.00 – 1.63 (m, 9H), 1.72 – 1.51 (m, 6H), 1.55 (d, J = 9.5 Hz, 3H), 1.47 (d, J = 11.0 Hz, 2H), 1.47 (d, J = 11.0 Hz, 2H), 1.42 – 0.94 (m, 10H), 1.02 (td, J = 22.0, 11.6 Hz, 3H), 0.71 (dd, J = 23.5, 11.8 Hz, 2H), 0.71 (dd, J = 23.5, 11.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 159.99, 155.18, 142.67, 130.46, 129.64, 124.78, 121.85 (d, *J* = 36.3 Hz), 120.83, 118.91, 113.47, 109.98, 77.21, 76.90 (d, *J* = 31.9 Hz), 76.76 – 76.50 (m), 74.00, 37.28, 36.49, 32.39, 30.94, 29.37 (d, *J* = 17.7 Hz), 26.17 (d, *J* = 9.9 Hz), 25.79, 25.53.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₆H₃₃N₂O 389.2587; Found 389.2571.

2-cyclohexyl-1-(o-tolyl)-1H-benzo[d]imidazole(4g)

Brown oil, yield: 86%. $[\alpha]_D^{25.3}$ = +33.06° (c 0.4, CH₂Cl₂), ee = 61%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 6.3 min (minor), t_{R2} = 7.4 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 7.84 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.43 (m, 2H), 7.43 – 7.37 (m, 1H), 7.26 (dd, *J* = 12.6, 6.5 Hz, 2H), 7.17 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 2.50 (ddd, *J* = 15.1, 7.6, 3.9 Hz, 1H), 1.97 (s, 3H), 1.96 – 1.64 (m, 7H), 1.40 – 1.11 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.31, 142.65, 136.47, 135.81, 134.73, 131.47, 129.51, 128.67, 127.32, 122.42, 122.11, 119.23, 109.98, 77.34 (d, *J* = 11.5 Hz), 77.07, 76.76, 36.41, 32.37, 31.32, 26.12, 25.67, 17.34.

HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₀H₂₃N₂ 291.1856; Found 291.1839.

tert-butyl (2-(2-cyclohexyl-1H-benzo[d]imidazol-1-yl)phenyl)carbamate(4h)

Brown solid, yield: 88%, Mp: 129-131 °C. $[\alpha]_D^{25.3}$ =+160.8° (c 0.4, CH₂Cl₂), ee = 69%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 6.3 min (minor), t_{R2} = 7.4 min (major).

¹**H NMR (600 MHz, CDCl₃)** δ 8.28 (d, *J* = 8.2 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.24 – 7.16 (m, 3H), 6.95 (d, *J* = 8.0 Hz, 1H), 5.94 (s, 1H), 2.67 – 2.40 (m, 1H), 1.86 (d, *J* = 10.3 Hz, 3H), 1.82 – 1.72 (m, 3H), 1.68 (s, 1H), 1.40 (s, 9H), 1.30 (dd, *J* = 21.0, 8.4 Hz, 1H), 1.24 – 1.15 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.86, 152.37, 142.98, 135.65 (d, *J* = 14.4 Hz), 130.41, 128.62, 123.78, 123.05, 122.81, 119.46, 109.92, 77.22, 77.01, 76.80, 36.36, 32.18, 31.49, 28.14, 26.01 (d, *J* = 7.1 Hz), 25.60.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₄H₃₀N₃O₂ 392.2333; Found 392.2343.

2-cyclohexyl-1-(2-nitrophenyl)-1H-benzo[d]imidazole(4i)

Brown oil, yield: 40%. $[\alpha]_D^{25.3}$ = +8.45° (c 0.4, CH₂Cl₂), ee = 43%; HPLC analysis: Daicel Chiralpak OD-H; Hexane/iPrOH = 80:20; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 6.3 min (minor), t_{R2} = 7.8 min (major).

¹**H NMR (600 MHz, CDCl₃)** δ 8.20 (d, *J* = 8.1 Hz, 1H), 7.86 (t, *J* = 7.7 Hz, 1H), 7.83 – 7.74 (m, 2H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.25 – 7.24 (m, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 7.9 Hz, 1H), 2.48 (t, *J* = 11.4 Hz, 1H), 1.83 (ddd, *J* = 34.7, 25.9, 14.2 Hz, 7H), 1.32 (d, *J* = 13.2 Hz, 2H), 1.17 (dd, *J* = 13.0, 9.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 159.15, 146.94, 142.80, 135.90, 134.30, 131.32, 130.54, 129.74, 125.97, 123.02, 122.76, 119.57, 109.02, 36.80, 32.58, 31.01, 29.69, 26.11 (d, *J* = 14.8 Hz), 25.61.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₁₉H₂₀N₃O₂ 322.1550; Found 322.1554.

6-chloro-2-cyclohexyl-1-(naphthalen-1-yl)-1H-benzo[d]imidazole(4j)

Brown oil, yield: 78%. ee = 50%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 70:30; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 5.2 min (minor), t_{R2} = 6.4 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 8.10 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.86 (s, 1H), 7.67 (t, J = 7.8 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.09 (dd, J = 7.7, 5.7 Hz, 2H), 6.69 (d, J = 8.5 Hz, 1H), 2.49 (dd, J = 15.5, 7.6 Hz, 1H), 1.97 (d, J = 12.1 Hz, 1H), 1.87 – 1.59 (m, 6H), 1.37 – 1.22 (m, 2H), 1.02 (ddt, J = 21.6, 12.2, 10.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.82 (s), 144.97 (s), 142.86 (s), 135.82 (s), 130.52 (s), 129.17 (s), 122.48 (s), 122.20 (s), 120.34 (s), 118.80 (s), 116.82 (s), 111.86 (s), 109.93 (s), 48.32 (s), 10.55 (s), 9.61 (s), 9.20 (s), 7.79 (s), 3.47 (d, *J* = 8.5 Hz).

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₃H₂₂ClN₂ 361.1472; Found 361.1463.

5-chloro-2-cyclohexyl-1-(2-isopropoxyphenyl)-1H-benzo[d]imidazole(4k)

Brown oil, yield: 89%. $[\alpha]_D^{25.3}$ = -12.05° (c 0.4, CH₂Cl₂), ee = 73%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 95:5; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 8.3 min (minor), t_{R2} = 10.7 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 7.69 (d, J = 8.5 Hz, 1H), 7.58 – 7.45 (m, 1H), 7.27 (s, 1H), 7.20 (dd, J = 8.5, 1.9 Hz, 1H), 7.11 (dd, J = 12.8, 4.9 Hz, 2H), 6.95 (d, J = 1.7 Hz, 1H), 6.86 – 6.70 (m, 1H), 4.52 (dt, J = 12.1, 6.0 Hz, 1H), 2.57 (ddd, J = 11.7, 7.6, 3.4

Hz, 1H), 2.04 – 1.89 (m, 2H), 1.89 – 1.74 (m, 3H), 1.72 – 1.60 (m, 2H), 1.51 – 1.38 (m, 1H), 1.32 (dd, *J* = 9.3, 6.4 Hz, 1H), 1.20 (d, *J* = 6.0 Hz, 3H), 1.14 (dd, *J* = 7.9, 4.7 Hz, 1H), 1.07 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.14, 153.59, 141.40, 137.01, 130.65, 129.57, 127.69, 124.79, 122.32, 120.92, 119.72, 114.74, 110.12, 77.35, 77.03, 76.71, 70.71, 36.47, 32.44, 30.87, 26.14 (d, *J* = 7.2 Hz), 25.73, 21.70 (d, *J* = 2.2 Hz).

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₂H₂₆ClN₂O 369.1728; Found 369.1722.

6-chloro-2-cyclohexyl-1-(2-isopropoxyphenyl)-1H-benzo[d]imidazole(4l)

Brown oil, yield: 70%. $[\alpha]_D^{25.3}$ = -36.45° (c 0.4, CH₂Cl₂), ee = 81%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 98:2; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 8.9 min (minor), t_{R2} = 10.3 min (major).

¹**H NMR (600 MHz, CDCl₃)** δ 7.66 (d, J = 8.5 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 7.26 (d, J = 5.9 Hz, 1H), 7.17 (dd, J = 8.5, 1.7 Hz, 1H), 7.09 (dd, J = 12.1, 8.0 Hz, 2H), 6.92 (d, J = 1.6 Hz, 1H), 4.48 (dd, J = 12.0, 6.0 Hz, 1H), 2.55 (dd, J = 13.4, 10.1 Hz, 1H), 1.96 (d, J = 13.0 Hz, 1H), 1.92 – 1.71 (m, 5H), 1.70 – 1.62 (m, 2H), 1.37 – 1.20 (m, 2H), 1.17 (d, J = 6.0 Hz, 3H), 1.05 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.14, 153.58, 141.37, 137.00, 130.66, 129.55, 127.70, 124.76, 122.33, 120.92, 119.69, 114.74, 110.12, 77.36, 77.05, 76.73, 70.71, 36.47, 32.43, 30.87, 26.13 (d, *J* = 7.2 Hz), 25.72, 21.69 (d, *J* = 2.1 Hz).

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₂H₂₆ClN₂O 369.1728; Found 369.1720.

2-cyclohexyl-1-(2-isopropoxyphenyl)-5-methoxy-1H-benzo[d]imidazole(4m)

Brown oil, yield: 63%. $[\alpha]_D^{25.3}$ = -10.36° (c 0.4, CH₂Cl₂), ee = 43%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 95:5; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 7.8 min (minor), t_{R2} = 10.4 min (major).

¹**H NMR (400 MHz, CDCl**₃) δ 7.52 – 7.43 (m, 1H), 7.33 (d, J = 2.1 Hz, 1H), 7.31 – 7.27 (m, 2H), 7.16 – 7.06 (m, 2H), 6.81 (dt, J = 8.7, 5.5 Hz, 2H), 4.46 (dd, J = 12.1, 6.0 Hz, 1H), 3.87 (s, 3H), 2.55 (dd, J = 9.3, 5.7 Hz, 1H), 2.06 – 1.89 (m, 2H), 1.88 – 1.71 (m, 3H), 1.67 (dd, J = 12.3, 2.8 Hz, 2H), 1.41 – 1.22 (m, 2H), 1.19 (d, J = 6.1 Hz, 3H), 1.17 – 1.10 (m, 1H), 1.05 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.49, 155.90, 153.66, 143.31, 130.98, 130.24, 129.68, 125.52, 120.89, 114.98, 111.63, 110.30, 101.46, 77.31 (d, *J* = 11.6 Hz), 77.05, 76.73, 70.75, 55.80, 36.53, 32.59, 30.95, 26.21 (d, *J* = 6.6 Hz), 25.79, 21.72.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₃H₂₉N₂O₂ 365.2224; Found 365.2234.

2-cyclopentyl-1-(2-propoxyphenyl)-1H-benzo[d]imidazole(4n)

White oil, yield: 42%. $[\alpha]_D^{25.3}$ = -19.71° (c 0.4, CH₂Cl₂), ee = 39%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 6.5 min (minor), t_{R2} = 9.4 min (major).

¹**H NMR (600 MHz, CDCl₃)** δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.30 (d, *J* = 7.4 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.19 – 7.06 (m, 3H), 6.93 (d, *J* = 8.0 Hz, 1H), 3.86 (dq, *J* = 15.5, 6.6 Hz, 2H), 3.09 – 2.95 (m, 1H), 2.11 (d, *J* = 8.0 Hz, 1H), 1.90 (dd, *J* = 15.9, 6.7 Hz, 3H), 1.85 (s, 2H), 1.63 – 1.48 (m, 4H), 0.68 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.01, 155.14, 136.86, 130.48, 129.77, 124.91, 121.98, 121.75, 120.85, 118.86, 113.34, 109.85, 70.09, 37.47, 32.91, 31.73, 29.69, 25.85 (d, *J* = 19.0 Hz), 22.24, 10.18.

HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₁H₂₅N₂O 321.1961; Found 321.1952.

2-cyclopropyl-1-(2-nitrophenyl)-1H-benzo[d]imidazole(40)

Brown oil, yield: 41%. ee = 41%; HPLC analysis: Daicel Chiralpak OD-H; Hexane/iPrOH = 80:20; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 8.4 min (minor), t_{R2} = 10.5 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 8.23 (d, J = 8.1 Hz, 1H), 7.89 (t, J = 7.7 Hz, 1H), 7.76 (dd, J = 10.3, 8.7 Hz, 2H), 7.64 (d, J = 7.8 Hz, 1H), 7.39 – 7.25 (m, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 1.62 (ddd, J = 13.0, 8.3, 4.8 Hz, 1H), 1.48 – 1.36 (m, 1H), 1.34 – 1.21 (m, 2H), 1.02 (dd, J = 8.2, 2.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.65 (s), 146.84 (s), 142.66 (s), 136.29 (s), 134.36 (s), 131.17 (s), 130.34 (s), 129.68 (s), 126.00 (s), 122.81 (d, *J* = 8.4 Hz), 119.21 (s), 108.81 (s), 77.37 (s), 77.05 (s), 76.74 (s), 9.82 (s), 8.85 (s), 7.98 (s).

HRMS (ESI-TOF) m/z $[M + H]^+$ Calcd for $C_{16}H_{14}N_3O_2$ 280.1086; Found 280.1079.

5-chloro-2-isopropyl-1-(naphthalen-1-yl)-1H-benzo[d]imidazole (4p)

White solid, yield: 80%, Mp: 123-124 °C. ee = 63%; HPLC analysis: Daicel Chiralpak AD-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 7.5 min (minor), t_{R2} = 9.4 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 8.05 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 1.6 Hz, 1H), 7.63 (t, J = 7.8 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 7.2 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.08–7.05 (m, 2H), 6.69 (d, J = 8.4 Hz, 1H), 2.84–2.77 (m, 1H), 1.32 (d, J = 6.8 Hz, 3H), 1.22 (d, J = 6.8 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 162.5, 143.5, 135.8, 134.6, 132.0, 130.6, 130.3, 128.7, 128.0, 127.3, 126.5, 125.7, 123.1, 122.3, 119.2, 111.1, 27.1, 22.2, 21.5;

1-(2-methoxy-6-methylphenyl)-2-(2-methoxyphenyl)-1H-benzo[d]imidazole (4q)

Brown oil, yield: 50%; ee = 13%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 85:15; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 20.2 min (minor), t_{R2} = 25.1min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.52 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.27 – 7.21 (m, 2H), 7.01 (d, *J* = 7.9 Hz, 1H), 6.97 – 6.88 (m, 2H), 6.78 (d, *J* = 8.3 Hz, 1H), 6.72 (d, *J* = 8.2 Hz, 1H), 3.55 (s, 3H), 3.49 (s, 3H), 2.08 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.37 (s), 155.28 (s), 152.50 (s), 143.37 (s), 137.84 (s), 135.80 (s), 132.27 (s), 130.84 (s), 129.28 (s), 124.34 (s), 122.72 (s), 122.46 (s), 122.03 (s), 120.33 (s), 119.96 (d, *J* = 16.1 Hz), 110.47 (d, *J* = 5.6 Hz), 109.04 (s), 77.39 (s), 77.07 (s), 76.75 (s), 55.29 (s), 54.91 (s), 17.82 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₂H₂₁N₂O₂ 344.1598; Found 344.1598.

2-cyclohexyl-1-(2-methoxy-6-methylphenyl)-1H-benzo[d]imidazole (4r)

Brown oil, yield: 65%; ee = 43%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 95:5; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 14.5 min (minor), t_{R2} = 20.5 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 7.85 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.35 – 7.21 (m, 1H), 7.16 (t, *J* = 7.2 Hz, 1H), 7.03 (d, *J* = 7.7 Hz, 1H), 6.95 (d, *J* = 8.3 Hz, 1H), 6.86 (d, *J* = 7.9 Hz, 1H), 3.69 (s, 3H), 2.48 – 2.34 (m, 1H), 1.99 (d, *J* = 10.9 Hz, 3H), 1.87 – 1.75 (m, 5H), 1.68 (d, *J* = 12.6 Hz, 1H), 1.43 – 1.26 (m, 3H), 1.20 (dt, *J* = 26.1, 8.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 160.01 (s), 155.97 (s), 142.77 (s), 138.26 (s), 135.07 (s), 130.02 (s), 123.25 (s), 122.81 (s), 122.23 (s), 121.94 (s), 119.10 (s), 109.72 (s), 109.45 (s), 55.62 (s), 36.67 (s), 31.87 (s), 31.50 (s), 26.24 (d, J = 2.6 Hz), 25.74 (s), 17.44 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₁H₂₅N₂O 321.1961; Found 321.1977.

2-(tert-butyl)-1-(2-isopropoxyphenyl)-1H-benzo[d]imidazole (4s)

Brown oil, yield: 43%; ee = 29%; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH =90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 7.1 min (minor), t_{R2} =12.5 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.50 (dt, *J* = 9.4, 6.4 Hz, 1H), 7.34 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.09 (dt, *J* = 17.2, 7.2 Hz, 3H), 6.72 (d, *J* = 8.0 Hz, 1H), 4.51 (dd, *J* = 12.1, 6.0 Hz, 1H), 1.38 (s, 9H), 1.16 (d, *J* = 6.1 Hz, 3H), 0.99 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 161.87 (s), 154.44 (s), 138.55 (s), 130.93 (d, *J* = 95.6 Hz), 129.38 (s), 127.22 (s), 121.84 (d, *J* = 64.4 Hz), 120.11 (s), 118.84 (s), 113.73 (s), 109.80 (s), 77.23 (s), 77.02 (s), 76.80 (s), 70.20 (s), 34.90 (s), 21.51 (s).

HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₀H₂₅N₂O 309.1961; Found 309.1974.

1-(2-methoxy-6-methylphenyl)-2-phenyl-1H-benzo[d]imidazole (4t)

Brown oil, yield: 52%; ee = 0; HPLC analysis: Daicel Chiralpak AD-H; Hexane/iPrOH =80:20; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 5.5 min (minor), t_{R2} = 9.4 min (major).

¹**H NMR (400 MHz, CDCl**₃) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.71 – 7.59 (m, 2H), 7.46 – 7.20 (m, 6H), 6.97 (dd, *J* = 7.8, 4.1 Hz, 2H), 6.89 (d, *J* = 8.3 Hz, 1H), 3.58 (s, 3H), 1.95 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.76 (s), 153.11 (s), 143.24 (s), 137.82 (s), 136.53 (s), 130.63 (s), 130.04 (s), 129.38 (s), 128.20 (d, *J* = 5.8 Hz), 124.75 (s), 122.95 (d, *J* = 14.8 Hz), 122.55 (s), 119.73 (s), 110.41 (s), 109.66 (s), 77.37 (s), 77.05 (s), 76.74 (s), 55.69 (s), 17.58 (s).

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₁H₁₉N₂O 315.1492; Found 315.1501.

1-(2-isopropoxyphenyl)-2-(naphthalen-2-yl)-1H-benzo[d]imidazole (4u)

Brown oil, yield: 63%; ee = 0; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} =13.7 min (minor), t_{R2} = 17.5 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 8.14 (s, 1H), 7.95 (s, 1H), 7.80 (d, J = 2.3 Hz, 3H), 7.73 (d, J = 7.9 Hz, 1H), 7.46 (dd, J = 8.2, 4.5 Hz, 4H), 7.36 (t, J = 7.1 Hz, 1H), 7.28 (s, 1H), 7.20 (s, 1H), 7.09 (s, 1H), 6.98 (d, J = 8.2 Hz, 1H), 4.36 – 4.27 (m, 1H), 1.02 (d, J = 6.0 Hz, 3H), 0.69 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.23 (d, J = 17.4 Hz), 143.21 (s), 137.55 (s), 133.44 (s), 132.89 (s), 130.19 (s), 129.39 (s), 128.66 – 128.25 (m), 127.70 (d, J = 15.9 Hz), 126.80 (s), 126.36 (d, J = 17.6 Hz), 125.77 (s), 122.96 (s), 122.60 (s), 120.70 (s), 119.57 (s), 114.43 (s), 110.73 (s), 77.42 (s), 77.10 (s), 76.78 (s), 70.09 (s), 21.72 (s), 20.84 (s).

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₆H₂₃N₂O 379.1805; Found 379.1820.

5-chloro-1-(naphthalen-1-yl)-2-(naphthalen-2-yl)-1H-benzo[d]imidazole (4v)

Brown oil, yield: 55%; ee = 0; HPLC analysis: Daicel Chiralpak AD-H; Hexane/iPrOH = 80:20; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 23.5 min (minor), t_{R2} =37.3 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 8.14 – 7.98 (m, 4H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.66 – 7.52 (m, 5H), 7.49 – 7.38 (m, 5H), 7.19 (dd, *J* = 8.6, 1.8 Hz, 1H), 6.83 (dd, *J* = 11.9, 5.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 154.49 (s), 143.84 (s), 136.97 (s), 134.51 (s), 133.57 (s), 133.16 (s), 132.73 (s), 130.07 (d, J = 6.9 Hz), 129.18 (s), 128.66 (s), 128.02 (d, J = 4.4 Hz), 127.58 (s), 127.22 (s), 126.73 (d, J = 12.3 Hz), 126.47 (s), 125.73 (s), 125.38 (s), 123.88 (s), 122.56 (s), 120.98 (s), 119.60 (s), 118.46 (s), 115.07 (s), 111.78 (s), 111.47 (s).

1-(2-isopropoxyphenyl)-2-(2-methoxyphenyl)-1H-benzo[d]imidazole (4w)

Brown oil, yield: 52%; ee = 0; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH =85:15; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 18.0 min (minor), t_{R2} = 23.8 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 7.90 (d, *J* = 7.9 Hz, 1H), 7.61 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.40 – 7.21 (m, 5H), 7.17 (d, *J* = 7.9 Hz, 1H), 7.05 – 6.89 (m, 3H), 6.77 (d, *J* = 8.3 Hz, 1H), 4.52 – 4.30 (m, 1H), 3.49 (s, 3H), 1.09 (d, *J* = 6.0 Hz, 3H), 0.96 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.13 (s), 152.76 (s), 152.23 (s), 143.19 (s), 136.68 (s), 132.41 (s), 130.92 (s), 129.27 (d, *J* = 4.8 Hz), 126.39 (s), 122.47 (s), 121.96 (s), 120.52 (s), 120.29 (s), 119.82 (s), 119.59 (s), 113.87 (s), 110.84 (s), 110.59 (s), 77.38 (s), 77.06 (s), 76.74 (s), 70.00 (s), 54.83 (s), 21.80 (s), 21.15 (s).

HRMS (ESI-TOF) m/z $[M + H]^+$ Calcd for C₂₃H₂₃N₂O₂ 359.1754; Found 359.1762.

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₇H₁₈ClN₂ 405.1153; Found 405.1164.

5-chloro-1-(2-isopropoxyphenyl)-2-(naphthalen-2-yl)-1H-benzo[d]imidazole (4x)

Brown oil, yield: 68%. ee = 0; HPLC analysis: Daicel Chiralpak AD-H; Hexane/iPrOH = 80:20; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 8.8 min (minor), t_{R2} = 12.7 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 8.10 (s, 1H), 7.78 (ddd, *J* = 26.0, 21.0, 8.3 Hz, 5H), 7.55 – 7.40 (m, 4H), 7.31 (dd, *J* = 13.1, 4.6 Hz, 1H), 7.16 (d, *J* = 1.6 Hz, 1H), 7.10 (s, 1H), 6.99 (d, *J* = 8.3 Hz, 1H), 4.42 – 4.31 (m, 1H), 1.05 (d, *J* = 6.0 Hz, 3H), 0.71 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.13 (s), 153.03 (s), 141.80 (s), 138.10 (s), 133.52 (s), 132.83 (s), 130.52 (s), 129.25 (s), 128.83 – 128.44 (m), 127.88 (s), 127.63 (s), 126.97 (s), 126.37 (s), 125.85 (s), 125.58 (s), 123.26 (s), 120.77 (s), 120.39 (s), 114.33 (s), 110.83 (s), 77.37 (s), 77.05 (s), 76.74 (s), 70.15 (s), 21.73 (s), 20.84 (s).

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₆H₂₂ClN₂O 413.1415; Found 413.1422.

2-(2-cyclopropyl-1H-benzo[d]imidazol-1-yl)-N-(cyclopropylmethyl)aniline (7a)

Brown oil, yield: 78%; ee = 0; HPLC analysis: Daicel Chiralpak IC-H; Hexane/iPrOH = 95:5; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 8.4 min (minor), t_{R2} = 10.5 min (major).

¹**H NMR (400 MHz, CDCl₃)** δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.26 (d, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.8 Hz, 2H), 7.04 (d, *J* = 7.8 Hz, 1H), 6.95 – 6.78 (m, 2H), 3.62 (s, 1H), 2.99 (d, *J* = 4.9 Hz, 2H), 1.79 (d, *J* = 4.0 Hz, 1H), 1.31 (d, *J* = 24.6 Hz, 3H), 1.15 – 0.83 (m, 3H), 0.58 – 0.35 (m, 2H), 0.10 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.82 (s), 144.97 (s), 142.86 (s), 135.82 (s), 130.52 (s), 129.17 (s), 122.48 (s), 122.20 (s), 120.34 (s), 118.80 (s), 116.82 (s), 111.86 (s), 109.93 (s), 48.32 (s), 10.55 (s), 9.61 (s), 9.20 (s), 7.79 (s), 3.47 (d, *J* = 8.5 Hz).

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₀H₂₂N₃ 304.1814; Found 304.1806.

N-(2-methoxybenzyl)-2-(2-(2-methoxyphenyl)-1H-benzo[d]imidazol-1-yl)aniline(7b)

Brown oil, yield: 65%; ee = 0; HPLC analysis: Daicel Chiralpak OD-H; Hexane/iPrOH = 90:10; flow: 1.0 mL/min; λ = 254 nm; 25 °C; Retention times: t_{R1} = 7.5 min (minor), t_{R2} = 9.6 min (major).

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 7.4 Hz, 1H), 7.37 (dd, J = 13.6, 7.0 Hz, 2H), 7.31 – 7.14 (m, 4H), 7.08 (d, J = 7.3 Hz, 1H), 6.99 (t, J = 7.3 Hz, 1H), 6.93 – 6.76 (m, 5H), 6.58 (t, J = 7.4 Hz, 1H), 4.32 (d, J = 12.3 Hz, 3H), 3.66 (s, 3H), 3.50 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.42 (s), 157.17 (s), 152.11 (s), 144.19 (s), 143.38 (s), 135.64 (s), 132.07 (s), 131.26 (s), 129.72 (s), 128.63 – 128.24 (m), 126.60 (s), 123.01 (s), 122.54 (s), 122.10 (s), 120.44 (d, *J* = 7.2 Hz), 119.90 (s), 119.66 (s), 116.34 (s), 111.65 (s), 111.25 (s), 110.78 (s), 110.14 (s), 77.50 (s), 77.18 (s), 76.86 (s), 54.98 (s), 43.03 (s).

HRMS (ESI-TOF) $m/z [M + H]^+$ Calcd for C₂₈H₂₆N₃O₂ 436.2025; Found 436.2017.

9. NMR spectrum of the obtained new products

90 80 fl (ppm)

90 80 fl (ppm)

90 80 fl (ppm)

90 80 El (ppm) £

90 80 f1 (ppn)

10. HPLC analysis spectrums

Peak#	Retention Time	Area	Area%	Peak#	Retention Time	Area	Area%
1	16.143	23644263	49.960	1	15.753	20947983	75.330
2	22.365	23682357	50.040	2	21.270	6860260	24.670
totals		47326620	100.000	totals		27808243	100.000

Peak#	Retention Time	Area	Area%	Peak#	Retention Time	Area	Area%
1	8.295	25574232	49.964	1	8.163	3206785	18.960
2	10.702	25610792	50.036	2	9.957	13707081	81.040
totals		51185024	100.000	totals		16913866	100.000

Peak#	Retention Time	Area	Area%	Peak#	Retention Time	Area	Area%
1	6.003	12656469	50.611	1	5.997	4318053	20.780
2	9.285	12350770	49.389	2	8.400	16462239	79.220
totals		25007239	100.000	totals		20780292	100.000

Volts

totals

totals

Peak#	Retention Time	Area	Area%	Peak#	Retention Time	Area	Area%
1	7.140	1860892	50.255	1	7.363	57222	35.039
2	12.537	1842002	49.745	2	12.953	106087	64.961
totals		3702894	100.000	totals		163309	100.000

Peak#	Retention Time	Area	Area%	Peak#	Retention Time	Area	Area%
1	14.475	10045817	50.086	1	15.740	373203	28.184
2	20.483	10011152	49.914	2	21.922	950960	71.816
totals		20056969	100.000	totals		1324163	100.000

Peak#	Retention Time	Area	Area%	Peak#	Retention Time	Area	Area%
1	20.245	48953527	49.961	1	21.553	451347	43.923
2	25.128	49029353	50.039	2	26.737	576237	56.077
totals		97982880	100.000	totals		1027584	100.000

