Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information (ESI)

Quick removal of metronidazole from aqueous solutions by

metal-organic frameworks

Tina Kalhorizadeh,^a Behnaz Dahrazma,^{a,*} Reza Zarghami,^{b,*} Soheyl Mirzababaei,^b Alexander M. Kirillov,^{c*} Reza Abazari^{d,*}

^aDepartment of Civil and Environment Engineering, Shahrood University of Technology, Shahrood, Iran. E-mail: behnaz dahrazma@shahroodut.ac.ir

^bPharmaceutical Engineering Research Lab., Pharmaceutical Process Centers of Excellence, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran. E-mail: rzarghami@ut.ac.ir

^cCentro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. E-mail: kirillov@tecnico.ulisboa.pt

^dDepartment of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran. E-mail: reza.abazari@modares.ac.ir

Electronic supplementary information (ESI) available: Additional experimental data on metronidazole removal (Figs. S1-S4, Tables S1 and S2).

Fig. S1. PXRD patterns of HKUST-1 (a) and NH_2 -MIL-101-Fe (b).

Fig. S2. Five recycling runs for the MNZ adsorption over HKUST-1 (a) and NH₂-MIL-101-Fe (b); (experimental conditions: adsorbent dosage: HKUST-1 = 0.3 g/L, NH₂-MIL-101-Fe = 0.2 g/L, initial MNZ concentration= 5 ppm, pH = 7, T = 25 °C).

Fig. S3. Kinetics of MNZ adsorption on HKUST-1 and NH₂-MIL-101-Fe: zero-order (a) pseudo-first-order (b), and pseudo-second-order (c) (experimental conditions: adsorbent dosage: HKUST-1 = 0.3 g/L, NH₂-MIL-101-Fe = 0.2 g/L, initial MNZ concentration= 10 ppm, pH = 7, T = 25 °C).

Fig. S4. Isotherm models for MNZ adsorption on HKUST-1 and NH₂-MIL-101-Fe: Langmuir (a), Freundlich (b), and Temkin (c) (experimental conditions: adsorbent HKUST-1 = 0.3 g/L, NH₂-MIL-101-Fe = 0.2 g/L, initial MNZ concentration = 10 ppm, pH = 7, T = 25 °C).

HKUST-1	Adsorbent dosage: 0.3 g/l pH=7 Contact time=20 minutes		NH ₂ -MIL-101-(Fe)	Adsorbent dosage: 0.2 g/l pH=7 Contact time=10 minutes	
Concentration	5 ppm	10 ppm	Concentration	5 ppm	10 ppm
Maximum Removal (%)	75.6	69.9	Maximum Removal (%)	91.3	87.2
Maximum Adsorption Capacity	12.71	30.14	maximum adsorption capacity	22.9	42.92
Isotherm	Langmuir		Isotherm	Langmuir	
Kinetic Model	pseudo-second-order		Kinetic Model	pseudo-second-order	

Table S1. Summary data on MNZ adsorption by HKUST-1 and NH2-MIL-101-(Fe).

Table S2. Summary for MNZ removal by different adsorbents.

Adsorbent	Removal (%)	Adsorption condition				Ref
		Time (min)	Dose (g.L ⁻¹)	рН	Temp (°C)	
UiO-66-NH₂	NR	130	0.1	6	25	[1]
HKUST-1-based SnO ₂	NR	240	2	3	NR	[2]
nanoCoFe₂O₄@MC	85.3	120	0.2	11	NR	[3]
CuCoFe₂O₄@MC/AC	93.78	15	0.4	3	NR	[4]
CuFe₂O₄@PBC	96.3	60	0.4	3	NR	[5]
combination of pyrite with ZVI	~ 100	360	ZVI=1 Pyrite=4	5-9	NR	[6]
Fe-Ce@N-BC	97.5	60	NR	NR	NR	[7]
PAA/PVDF–NZVI	98	120	NR	5	NR	[8]
GO/β-CD/Ag	93.5	20	0.4	2	15	[9]

AMGG	84	27	0.86	5.9	26	[10]
mixture of NiO and ZnO	87.7	50	NR	NR	NR	[11]
HKUST-1	69.9	20	0.3	7	25	This Work
NH ₂ -MIL-101-(Fe)	91.3	10	0.2	7	25	

NR = Not Reported

References

- 1 K. Talha, B. Wang, J. Liu, R. Ullah, F. Feng, J. Yu, S. Chen and J. Li, Effective adsorption of metronidazole antibiotic from water with a stable Zr(IV)-MOFs: Insights from DFT, Kinetics and thermodynamics studies, *J. Environ. Chem. Eng.*, 2020, 8, 103642.
- 2 R. Sheikhsamany, H. Faghihian and R. Fazaeli, Synthesis of novel HKUST-1-based SnO₂ porous nanocomposite with the photocatalytic capability for degradation of metronidazole, *Mater. Sci. Semicond. Process.*, 2022, **138**, 106310.
- 3 A. Nasiri, F. Tamaddon, M.H. Mosslemin, M. Faraji, A microwave assisted method to synthesize nanoCoFe₂O4@methyl cellulose as a novel metal-organic framework for antibiotic degradation, *MethodsX*, 2019, **6**, 1557-1563.
- 4 S. Rajabi, A. Nasiri and M. Hashemi, Enhanced activation of persulfate by CuCoFe₂O₄@ MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation, *Chemosphere*, 2022, **286**, 131872.
- 5 H. Cai, Z. Ma and T. Zhao, Fabrication of magnetic CuFe₂O₄@PBC composite and efficient removal of metronidazole by the photo-Fenton process in a wide pH range, *J. Environ. Manage.*, 2021, **300**, 113677.

- 6 H. Linting, C. Kun, D. Huaping, L. Jianfa and L. Yimin, Enhanced effect of pyrite on the removal of metronidazole by zero valent iron, J. Colloid Interface Sci., 2021, 600, 775-783.
- 7 K. Xiao, F. Liang, J. Liang, W. Xu, Z. Liu, B. Chen, X. Jiang, X. Wu, J. Xu, J. Beiyuan, and H. Wang, Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: Applications, mechanism insight and toxicity evaluation, *Chem. Eng. J.*, 2022, **433**, 134387.
- 8 J. Yang, X. Wang, M. Zhu, H. Liu and J. Ma, Investigation of PAA/PVDF–NZVI hybrids for metronidazole removal: synthesis, characterization, and reactivity characteristics, *J. Hazard. Mater.*, 2014, 264, 269-277.
- 9 N. Jafarzadeh, H. Rezazadeh, Z. Ramezani, S. Jorfi, M. Ahmadi, H. Ghariby and G. Barzegar, Taguchi optimization approach for metronidazole removal from aqueous solutions by using graphene oxide functionalized β-cyclodextrin/Ag nanocomposite, *Water Sci. Technol.*, 2018, 2017, 36-47.
- 10 Z. Bonyadi, F. Noghani, A. Dehghan, J.P. Van der Hoek, D.A. Giannakoudakis, S.K. Ghadiri, I. Anastopoulos, M. Sarkhosh, J.C. Colmenares and M. Shams, Biomass-derived porous aminated graphitic nanosheets for removal of the pharmaceutical metronidazole: Optimization of physicochemical features and exploration of process mechanisms, *Colloids Surf, A Physicochem Eng Asp.*, 2021, **611**, 125791.
- 11 H. Derikvandi and A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature, *J. Hazard. Mater.*, 2017, **321**, 629-638.