Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Synthesis of Aryl Cobalt and Iron Complexes and their Catalytic Activity on

Hydrosilylation of Alkenes

Wei Huang,^{*a*} Jiahui Lu,^{*b*} Qingqing Fan,^{*a*} Xiaoyan Li,^{*a*} Alexander Hinz,^{*c*,*} Hongjian Sun,^{*a*,*}

^aSchool of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China

^b School of Chemsitry and Chemical Engineering, University of Jinan, 250022 Jinan, People's Republic of China

^c Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstr.15, 76131 Karlsruhe, Germany

Correspondence author: hjsun@sdu.edu.cn

Contents

S1. Crystallographic Data for complexes 1-7	S2	
S2. IR spectra of complexes 1-7	S 3	
S3. Mass spectrum of complex 5	S5	
S4. ¹ H NMR and ¹³ C NMR Spectra of Hydrosilylation Products	S 6	
S5. Reference	S28	

complex	1	2	4	6	7
formula	C14H27ClCoF4NP3	$C_{17}H_{36}F_4FeNP_4\\$	C15H27ClF5FeP3	$\mathrm{C}_{22}\mathrm{H}_{32}\mathrm{CoF_4NP_3}$	$C_{25}H_{37}CoP_3$
M_z	472.65	510.20	486.57	538.32	489.38
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space group	Cc	P2 ₁ /c	C2/c	$P2_1/c$	P21
a [Å]	9.2381(2)	8.9999(2)	15.0248(3)	18.3827(5)	8.8303(2)
b [Å]	15.2301(4)	10.1154(2)	9.0984(2)	8.7737(2)	16.4996(4)
c [Å]	15.7220(4)	26.2786(5)	31.9118(6)	16.3807(4)	9.2364(2)
α [°]	90	90	90	90	90
β [º]	106.586(3)	98.2920(18)	95.403(2)	102.742(3)	96.734(2)
γ [°]	90	90	90	90	90
V [Å ³]	2119.99(9)	2367.33(9)	4343.01(15)	2576.89(11)	1336.43(5)
T [K]	173.00(10)	172.99(10)	173	173.0	173
Z	4	4	8	4	2
$\mu[mm^{-1}]$	9.947	7.981	9.162	7.327	6.781
total reflns	6948	15188	12589	14681	18004
unique reflns	2431	4177	3806	4564	5375
R _{int}	0.0528	0.0527	0.0547	0.0703	0.0723
$R_1[I \ge 2\sigma(I)]$	0.0308	0.0442	0.0433	0.0594	0.0450
$wR(F^2)[I>2\sigma(I)]$	0.0753	0.1082	0.1049	0.1361	0.1170
R1(all data)	0.0322	0.0492	0.0489	0.0761	0.0511
wR(F ²)(all data)	0.0760	0.1108	0.1079	0.1456	0.1200
GOF on F ²	1.029	1.055	1.025	1.075	1.212

S1.Crystallographic Data for Complexes1-7

Fig.S2 IR spectrum of complex 2

Fig.S4 IR spectrumof complex 6

Fig.S5 IR spectrum of complex 7

S3 Mass spectrum of complex 5

S4 ¹H NMR and ¹³C NMR Spectra of Hydrosilylation Products Diphenyl(1-phenylethyl)silane (2a)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.45-7.43 (m, 2H), 7.42-7.35 (m, 2H), 7.31-7.21 (m, 5H), 7.18-7.15 (m, 2H), 7.00-6.98 (m, 3H), 6.88-6.78 (m, 1H), 4.74 (d, J = 6.0 Hz, 1H), 2.72 (qd, J = 9.0, 3.0 Hz, 1H), 1.36 (d, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 146.62, 135.67, 135.52, 133.97, 132.47, 129.93, 129.30, 128.04, 127.70, 125.90, 125.05, 27.02, 16.24.

Fig.S8¹³C NMR spectrum of **2a**

Diphenyl(1-(p-tolyl)ethyl)silane (2b)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.44-7.42 (m, 2H) 7.29-7.23 (m, 4H), 7.21-7.18 (m, 2H), 7.16-7.13 (m, 2H), 6.91-6.88 (m, 2H), 6.82-6.80 (m, 2H), 4.74 (d, J = 3.0 Hz, 1H), 2.69 (qd, J = 6.0, 3.0 Hz, 1H), 2.18 (s, 3H), 1.35 (d, J = 9.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 141.29, 135.83, 135.69, 134.35, 133.32, 133.30, 129.76, 129.64, 129.00, 128.00, 127.83, 127.70, 26.47, 21.08, 16.83.

Fig.S10¹³C NMR spectrum of **2b**

Diphenyl(1-(m-tolyl)ethyl)silane (2c)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.41-7.38 (m, 1H), 7.24-7.08 (m, 7H), 7.13-7.10 (m, 2H), 7.08-7.6.94 (m, 1H), 6.91-6.75 (m, 1H), 6.71-6.66 (m, 2H), 4.73 (d, J = 3.0 Hz, 1H), 2.66 (qd, J = 6.0, 3.0 Hz, 1H), 2.08 (s, 3H), 1.33 (d, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 144.37, 137.72, 135.95, 135.82, 135.38, 133.36, 129.89, 129.76, 128.87, 127.90, 125.91, 124.94, 27.06, 21.63, 16.72.

Fig.S12¹³C NMR spectrum of **2c**

Diphenyl(1-(o-tolyl)ethyl)silane (2d)²

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.46-7.44 (m, 2H), 7.35-7.32 (m, 2H), 7.31-7.28 (m, 2H), 7.25-7.20 (m, 3H), 7.17 (m, 1H), 7.15 (m, 1H), 7.01-6.94 (m, 3H), 4.72 (d, J = 6.0 Hz, 1H), 2.92 (qd, J = 9.0, 3.0 Hz, 1H), 1.99 (s, 3H), 1.36 (d, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 142.87, 135.86, 135.33, 133.38, 132.86, 130.10, 129.80, 129.57, 127.97, 127.73, 126.81, 126.08, 124.77, 29.76, 20.13, 16.62.

Fig.S14¹³C NMR spectrum of 2d

(1-(4-methoxyphenyl)ethyl)diphenylsilane (2e)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.45-7.43 (m, 2H), 7.43-7.17 (m, 8H), 6.86-6.83 (m, 2H), 6.68-6.65 (m, 2H), 4.75 (d, J = 3.0 Hz, 1H), 3.69 (s, 3H), 2.70 (qd, J = 6.0, 3.0 Hz, 1H), 1.36 (d, J = 9.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 157.13, 136.32, 135.71, 135.59, 133.24, 129.66, 129.53, 128.55, 127.91, 127.73, 113.66, 55.24, 25.82, 16.87.

Fig.S16¹³C NMR spectrum of 2e

(1-(4-(tert-butyl)phenyl)ethyl)diphenylsilane (2f)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.42-7.39 (m, 2H), 7.27-7.25 (m, 2H), 7.23-7.21 (m, 2H), 7.19-7.18 (m, 2H), 7.13-7.08 (m, 4H), 6.86-6.83 (m, 2H), 4.74 (d, J = 6.0 Hz, 1H), 2.69 (qd, J = 6.0, 3.0 Hz, 1H), 1.34 (d, J = 6.0 Hz, 3H), 1.22 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 147.84, 141.25, 135.90, 135.74, 133.41, 133.36, 129.81, 129.64, 128.05, 127.82, 127.47, 125.19, 34.42, 31.62, 26.41, 16.68.

Fig.S18¹³C NMR spectrum of **2f**

(1-(naphthalen-1-yl)ethyl)diphenylsilane (2i)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.53-7.50 (m, 1H), 7.46-7.42 (m, 2H), 7.40-7.31 (m, 2H), 7.27-7.18 (m, 6H), 7.18-7.11 (m, 3H), 7.09-7.-05(m, 2H), 7.02 (m, 1H), 4.80 (d, J = 3.0 Hz, 1H), 2.87 (qd, J = 6.0, 3.0 Hz, 1H), 1.44 (d, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 141.01, 135.97, 135.38, 133.90, 133.23, 132.80, 131.45, 129.76, 129.62, 128.83, 127.87, 127.81, 125.55, 125.53, 125.34, 125.25, 124.09, 123.59, 21.19, 17.14.

(1-(naphthalen-2-yl)ethyl)diphenylsilane (2j)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.59-7.52 (m, 1H), 7.49-7.45 (m, 2H), 7.41-7.38 (m, 2H), 7.30-7.26 (m, 2H), 7.24-7.19 (m, 4H), 7.16-7.12 (m, 3H), 7.10-7.07 (m, 2H), 7.03-7.01 (m, 1H), 4.79 (d, J = 3.0 Hz, 1H), 2.86 (qd, J = 6.0, 3.0 Hz, 1H), 1.42 (d, J = 9.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 142.38, 136.07, 135.93, 135.52, 134.02, 133.23, 131.89, 130.09, 129.98, 128.42, 128.27, 128.11, 127.88, 127.67, 127.59, 126.08, 125.61, 125.09, 27.55, 16.92.

(1-(thiophen-2-yl) ethyl)diphenylsilane (2k)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.47-7.45 (m, 2H), 7.35-7.30 (m, 3H), 7.27-7.22 (m, 3H), 6.78-6.77 (m, 2H), 6.75 (m, 1H), 6.51 (m, 1H), 6.49 (m, 1H), 4.83 (d, J = 6.0 Hz, 1H), 3.04 (qd, J = 6.0, 3.0 Hz, 1H), 1.42 (d, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 148.17, 135.70, 135.60, 132.74, 132.63, 129.89, 129.82, 128.02, 127.88, 126.75, 122.84, 121.83, 22.29, 18.09.

Fig.S24¹³C NMR spectrum of 2k

(1-([1,1'-biphenyl]-4-yl)ethyl)diphenylsilane(2l)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.45-7.43 (m, 4H), 7.41 (m, 1H), 7.32-7.29(m, 3H), 7.28-7.24 (m, 5H), 7.21 (m, 1H), 7.18 (m, 1H), 7.15-6.13 (m, 2H), 6.96-6.93 (m, 2H), 6.93 (m, 1H), 4.75 (d, J = 3.0 Hz, 1H), 2.75 (qd, J = 9.0, 3.0 Hz, 1H), 1.37 (d, J = 9.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 143.75, 141.25, 137.89, 135.93, 135.79, 133.14, 129.96, 129.84, 128.89, 128.30, 128.15, 127.98, 127.03, 127.00, 26.91, 16.68.

Fig.S26¹³C NMR spectrum of **2**l

(1-(3-chlorophenyl)ethyl)diphenylsilane (2m)³

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.45-7.43 (m, 2H), 7.35 (m, 1H), 7.32-7.21 (m, 6H), 7.18-7.15 (m, 2H), 7.00-6.98 (m, 2H), 6.88 (m, 1H),4.74 (d, J = 6.0 Hz, 1H), 2.72 (qd, J = 9.0, 3.0 Hz, 1H), 1.36 (d, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 146.62, 135.67, 135.52, 133.97, 132.47, 129.93, 129.82, 129.30, 128.04, 127.87, 127.70, 125.90, 125.05, 27.02, 16.24.

(1-(2-chlorophenyl)ethyl)diphenylsilane (2n)³

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.55-7.53 (m, 2H), 7.42-7.29 (m, 7H), 7.26-7.13 (m, 3H), 7.10-7.05 (m, 2H), 4.83 (d, J = 3.0 Hz, 1H), 3.45 (qd, J = 6.0, 3.0 Hz, 1H), 1.43 (d, J = 9.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 142.39, 135.88, 135.32, 135.18, 132.43, 129.87, 129.65, 129.32, 128.24, 128.07, 127.96, 127.77, 126.75, 125.97, 22.79, 16.07.

Fig.S30¹³C NMR spectrum of **2n**

(1-(4-chlorophenyl)ethyl)diphenylsilane (20)³

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.42-7.40 (m, 2H), 7.31-7.20 (m, 6H), 7.17-7.15 (m, 2H), 7.09-7.02 (m, 2H), 6.99-6.79 (m, 2H),4.72 (d, J = 6.0 Hz, 1H), 2.70 (qd, J = 9.0, 3.0 Hz, 1H), 1.33 (d, J = 9.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 135.68, 135.55, 135.16, 129.89, 129.79, 128.96, 128.23, 128.13, 128.03, 127.88, 26.58, 16.43.

(1-(4-Bromophenyl)ethyl)diphenylsilane (2p)³

1H NMR (300 MHz, CDCl3): δ (ppm) 7.68 (m, 1H), 7.68-7.66 (m, 2H), 7.65 (m, 1H), 7.53-7.47 (m, 6H), 7.46-7.44 (m, 2H), 7.13-7.11 (m, 2H), 5.00 (d, J = 3.0 Hz, 1H), 2.80 (qd, J = 9.0, 3.0 Hz, 1H), 1.58 (d, J = 6.0 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 143.29, 135.62, 135.22, 133.93, 131.44, 129.83, 129.75, 128.23, 128.20, 119.51, 30.03, 14.29.

Fig.S34¹³C NMR spectrum of **2p**

(1-(3-fluorophenyl)ethyl)diphenylsilane (2q)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.39-7.37(m, 2H), 7.24-7.13 (m, 4H), 7.13-7.08 (m, 2H), 6.97-6.95 (m, 2H), 6.92-6.89 (m, 1H), 6.63-6.58(m, 3H), 4.71 (d, J = 3.0 Hz, 1H), 2.68 (qd, J = 6.0, 3.0 Hz, 1H), 1.30 (d, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 164.60, 161.36, 135.75, 135.59, 132.64, 129.99, 129.87, 129.57, 129.45, 128.12, 127.94, 111.66, 27.18, 16.38.

Fig.S36¹³C NMR spectrum of **2q**

(1-(4-fluorophenyl)ethyl)diphenylsilane (2r)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.44-7.41 (m, 2H), 7.29-7.25 (m, 3H), 7.23-7.17(m, 3H), 6.85-6.82 (m, 2H) 6.81-6.76 (m, 3H), 6.73 (m, 1H), 4.72 (d, J = 3.0 Hz, 1H), 2.70 (qd, J = 6.0, 3.0 Hz, 1H), 1.34 (d, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 139.98, 135.67, 135.53, 132.79, 129.83, 129.70, 128.90, 128.80, 128.00, 127.82, 115.03, 114.75, 26.22, 16.70.

Fig.S38¹³C NMR spectrum of **2r**

Diphenyl(1-(3-(trifluoromethyl)phenyl)ethyl)silane (2s)³

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.36-7-38 (m, 2H), 7.25-7.17 (m, 7H), 7.13-7.04 (m, 3H), 7.00-6.98(m, 2H), 4.70 (d, J = 3.0 Hz, 1H), 2.74 (qd, J = 6.0, 3.0 Hz, 1H), 1.33 (d, J = 9.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 145.63, 135.86, 135.72, 132.44, 131.11, 130.24, 130.12, 128.69, 128.31, 128.15, 124.61, 121.94, 27.54, 16.24.

Diphenyl(1-(4-(trifluoromethyl)phenyl)ethyl)silane (2t)³

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.45-7.42 (m, 3H), 7.35-7.32 (m, 1H), 7.31-7.23 (m, 5H), 7.21-7.18 (m, 2H), 7.17 (m, 1H), 7.00-6.97 (m, 2H), 4.74 (d, J = 3.0 Hz, 1H), 2.83 (qd, J = 9.0, 3.0 Hz, 1H), 1.40 (d, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 135.64, 135.46, 132.24, 129.98, 129.87, 128.06, 127.90, 127.78, 125.03, 27.42, 16.11.

(n-heptyl)diphenylsilane (3a)³

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.57-7.54 (m, 4H), 7.54-7.35 (m, 5H), 7.33-7.26(m, 1H),4.84 (t, J = 3.0 Hz, 1H), 1.54-1.46 (m, 2H), 1.43-1.10 (m, 10H), 0.86 (t, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 135.12, 134.74, 129.43, 127.92, 33.11, 31.75, 29.69, 28.87, 24.39, 22.63, 14.05.

Fig.S44¹³C NMR spectrum of **3a**

(n-octyl)diphenylsilane (3b)¹

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.57-7.53 (m, 4H), 7.39-7.33 (m, 5H), 7.32-7.26(m, 1H),4.84 (t, J = 3.0 Hz, 1H), 1.46-1.10 (m, 14H), 0.86 (t, J = 9.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 135.12, 134.74, 129.44, 127.92, 33.15, 31.87, 29.69, 29.18, 24.38, 22.64, 14.08, 12.14.

Fig.S46¹³C NMR spectrum of **3b**

(6-chlorohexyl)diphenylsilane(3c)⁴

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.56-7.54 (m, 4H), 7.53-7.34 (m, 4H), 7.32-7.31(m, 2H),4.85 (t, J = 3.0 Hz, 1H), 3.46 (t, J = 6.0 Hz, 2H), 1.73-1.68(m, 2H), 1.48-1.37 (m, 6H), 1.17-1.12(m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 135.16, 134.57, 129.58, 128.03, 45.13, 32.54, 32.35, 26.50, 24.30, 12.12.

Fig.S48¹³C NMR spectrum of **3c**

Diphenyl(4-phenylbutyl)silane (3d)⁵

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.56-7.39 (m, 4H), 7.37-7.25 (m, 6H), 7.23-7.18 (m, 2H), 7.16-7.11 (m, 3H), 4.85 (t, J = 3.0 Hz, 1H), 2.59 (t, J = 6.0 Hz, 2H), 1.74-1.64(m, 2H), 1.57-1.47 (m, 2H), 1.25-1.15 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 142.63, 135.14, 134.54, 129.83, 129.53, 128.38, 128.24, 127.98, 125.59, 35.52, 34.87, 24.12, 12.02.

Fig.S50¹³C NMR spectrum of **3d**

S5 Reference

- 1 Y. Gao, L. Wang, L. Deng, ACS Catal. 2018, 8, 9637.
- 2 Gribble, M. W.; Pirnot, M. T.; Bandar, J. S.; Liu, R. Y.; Buchwald, S. L. Organometallics. 2019, 38, 3906.
- 3 W. Yang, Q. Fan, X. Du, S. Xie, W. Huang, X. Li, H. Sun, O. Fuhr, D. Fenske, Organometallics. 2021, 40, 2836.
- 4 Y. Toya, K. Hayasaka, H. Nakazawa, Organometallics. 2017, 36, 1727.
- 5 R. Zhou, Y. Goh, H. Liu, H. Tao, L. Li, J. Wu, Angew. Chem. Int. Ed. 2017, 56, 16621.