Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary information

One Step Synthesis of PY-NBD to Distinguish Cys/Hcy and GSH in

Aqueous Solution and Living Cells by Dual Channels

Mengxu Gao, Sa Su, Hao Kang, Chenlu Liang, Rubing Han, Jing Jing*, and Xiaoling

Zhang*

Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

E-mail address: hellojane@bit.edu.cn (J. Jing), zhangxl@bit.edu.cn (X.L. Zhang)

CONTENTS

1. Experimental reagents and instruments	S2
2. Characterization data	S2
3. Time-dependent fluorescence changes of PY-NBD	S3
4. The capabilities of PY-NBD for detecting Hcy/Cys and GSH at different pH	S4
5. ESI-MS of PY-NBD after upon addition Cys, Hcy, and GSH	S4
6. Cytotoxicity assay	S5

1. Experimental reagents and instruments

All other chemicals were obtained from commercial suppliers and used without further purification. Silica gel (200-300 mesh, Qingdao Haiyang Chemical Co.) was used for column chromatography. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance at 400MHz or at 100 MHz, δ values are in parts per million relatives to TMS in DMSO-d₆. Mass spectra (MS) were measured with Bruker Apex IV FTMS using electrospray ionization (ESI). Absorption spectra were recorded on a Purkinje TU-1901 spectrophotometer. Fluorescence measurements were taken on a Hitachi F-7000 fluorescence spectrometer with a 10mm quartz cuvette. pH measurements were carried out with a pH acidometer (Mettler Toledo FE-30). Fluorescence imaging was observed under an Olympus IX81 confocal fluorescence microscope.

2. Characterization data

Fig. S1. ¹H NMR (400 MHz, DMSO-d₆) spectra of probe PY-NBD.

Fig. S2. ¹³C NMR (101 MHz, DMSO-d₆) spectra of probe PY-NBD.

Fig. S3. ESI-MS of probe PY-NBD.

Fig. S4. The stability of **PY-NBD** (5 μ M) in PBS (10 mM, pH 7.4, 50% CH₃CN, V/V) system and the fluorescence spectrum of response time to 50 μ M Hcy/Cys/GSH. (A) At 410nm, λ ex=345 nm. Slit: 2.5 nm/2.5 nm; (B) At 546nm, λ ex=473 nm. Slit: 5.0 nm/5.0 nm.

4. The capabilities of PY-NBD for detecting Hcy/Cys and GSH at different pH

Fig. S5. Fluorescence intensity change graph of PY-NBD (5 μ M) and Hcy/Cys/GSH (50 μ M) at different pH. (A) At 410nm, λ ex=345 nm. Slit: 2.5 nm/2.5 nm; (B) At 546nm, λ ex=473 nm. Slit: 5.0 nm/5.0 nm.

5. ESI-MS of PY-NBD after upon addition Cys, Hcy, and GSH

Fig. S7. ESI-MS of PY-NBD after upon addition Hcy

Fig. S8. ESI-MS of PY-NBD after upon addition GSH

6. Cytotoxicity assay

Fig. S9. Cell viability of HeLa cells treated with different concentrations of PY-NBD