Supporting Information

Two porous three-dimensional (3D) metal-organic frameworks based on diverse metal clusters: selective sensing of Fe^{3+} and $Cr_2O_7^{2-}$

Yang-Tian Yan ^{a,*}, Yun-Long Wu ^a, Li-Na Zheng ^a, Wei Cai ^a, Peng-Fei Tang ^a, Wei-Ping Wu ^c, Wen-Yan Zhang ^b, and Yao-Yu Wang ^b

^a School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China.

^b Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China.

^c College of Chemistry and Environmental Engineering and Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, Zigong 643000, P. R. China.

MOFs	1	2
formula	C ₅₉ H ₆₅ Zn ₅ N ₅ O ₂₉	$C_{66}H_{88}Cu_3N_8O_{29}$
Mr	1635.01	1648.06
crystal system	triclinic	orthorhombic
space group	<i>P</i> -1	Imma
<i>a</i> (Å)	12.153(2)	30.462(4)
<i>b</i> (Å)	12.643(3)	28.777(4)
<i>c</i> (Å)	12.690(3)	12.1091(17)
α (°)	84.243(3)	90
β (°)	85.337(3)	90
γ (°)	78.012(3)	90
$V(Å^3)$	1894.1(7)	10615(3)
Ζ	1	4
$D_{\text{calc}}(\text{g cm}^{-3})$	1.433	1.031
<i>F</i> (000)	836.0	3436.0
GOF on F^2	1.087	0.945
R_1^a [I>2 σ (I)]	0.0549	0.0482
wR_2^b (all data)	0.1913	0.1234

 Table S1 Crystallographic data and Structural Refinement Parameters of 1 and 2.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR_{2}{}^{b} = [\Sigma w (F_{o}{}^{2} - F_{c}{}^{2})^{2} / \Sigma w (F_{o}{}^{2})^{2}]^{1/2}$

Complex 1			
O(1)-Zn(2)#1	1.909(4)	Zn(1)-O(3)#2	2.060(3)
Zn(1)-O(3)	2.060(3)	Zn(1)-O(6)#2	2.181(4)
Zn(1)-O(6)	2.181(4)	O(9)-Zn(3)#6	1.931(4)
Zn(1)-O(8)#2	2.041(4)	O(10)-Zn(2)#4	2.001(4)
Zn(1)-O(8)	2.041(4)	O(11)-Zn(3)#4	1.953(4)
Zn(2)-O(1)#3	1.909(4)	O(3)-Zn(1)-O(3)#2	180.0
Zn(2)-O(3)	1.974(4)	O(3)-Zn(1)-O(6)	96.03(15)
Zn(2)-O(4)	1.966(4)	O(3)-Zn(1)-O(6)#2	83.97(15)
Zn(2)-O(10)#4	2.001(4)	O(3)#2-Zn(1)-O(6)	83.97(15)
Zn(3)-O(3)	1.973(4)	O(3)#2-Zn(1)-O(6)#2	96.03(15)
Zn(3)-O(7)	1.929(4)	O(6)-Zn(1)-O(6)#2	180.0(2)
Zn(3)-O(9)#5	1.931(4)	O(1)#3-Zn(2)-O(3)	109.31(16)
Zn(3)-O(11)#4	1.953(4)	O(1)#3-Zn(2)-O(4)	117.78(18)
O(8)-Zn(1)-O(3)#2	88.97(17)	O(11)#4-Zn(3)-O(3)	105.83(17)
O(8)-Zn(1)-O(3)	91.03(17)	O(3)-Zn(2)-O(10)#4	108.39(16)
O(8)#2-Zn(1)-O(3)#2	91.03(17)	O(4)-Zn(2)-O(3)	115.58(17)
O(8)#2-Zn(1)-O(3)	88.97(17)	O(4)-Zn(2)-O(10)#4	99.6(2)
O(8)-Zn(1)-O(6)	89.80(16)	O(7)-Zn(3)-O(3)	110.82(17)
O(8)-Zn(1)-O(6)#2	90.20(16)	O(7)-Zn(3)-O(9)#5	121.5(2)
O(8)#2-Zn(1)-O(6)	90.20(16)	O(7)-Zn(3)-O(11)#4	103.5(2)
O(8)-Zn(1)-O(8)#2	180.0	O(9)#5-Zn(3)-O(3)	106.20(18)

Table S2. Selected Bond Length (Å) and Angles (°) for 1 and 2 $\,$

Symmetrical codes: #1 x, y+1, z; #2 -x, -y+1, -z+1; #3 x, y-1, z; #4 -x+1, -y+1, -z+1; #5 x, y, z-1;

#6 x, y, z+1 for 1			
Complex 2			
Cu(1)-O(1)	1.9447(17)	Cu(2)-O(3)	1.9744(18)
Cu(1)-O(1)#1	1.9448(17)	Cu(2)-O(4)#4	1.9716(19)
Cu(1)-O(1)#2	1.9448(17)	Cu(2)-O(4)#6	1.9716(19)
Cu(1)-O(1)#3	1.9448(17)	Cu(2)-O(5)	2.155(4)
Cu(2)-O(3)#5	1.9743(18)	O(4)-Cu(2)#4	1.9716(19)
O(1)-Cu(1)-O(1)#2	180.0	O(3)#5-Cu(2)-O(3)	88.98(12)
O(1)#2-Cu(1)-O(1)#1	88.52(10)	O(3)-Cu(2)-O(5)	95.48(11)
O(1)#2-Cu(1)-O(1)#3	91.48(10)	O(3)#5-Cu(2)-O(5)	95.48(11)
O(1)#3-Cu(1)-O(1)#1	180.00(8)	O(4)#4-Cu(2)-O(3)#5	90.05(9)
O(1)-Cu(1)-O(1)#1	91.48(10)	O(4)#6-Cu(2)-O(3)	90.05(9)

O(1)-Cu(1)-O(1)#3	88.52(10)	O(4)#6-Cu(2)-O(3)#5	168.41(9)	
O(4)#4-Cu(2)-O(3)	168.41(9)	O(4)#6-Cu(2)-O(5)	96.11(10)	
O(4)#4-Cu(2)-O(4)#6	88.58(12)	O(4)#4-Cu(2)-O(5)	96.11(10)	
Symmetrical codes: #1 -x+1/2, y+0, -z+3/2; #2 -x+1/2, -y-1/2, -z+3/2; #3 x, -y-1/2, z; #4 -x+1, -y,				
-z+1; #5 -x+1, y, z; #6 x, -y, -z+1 for 2				

Fig. S1. The structure of 1 in ellipsoid model (a) and coordination configuration of H_5L ligand in 1 (b).

Fig. S2. 3D microporous framework of **1** and along *a*-axis. All the H atoms and guest molecules are omitted for clarity.

Fig. S3. The structure of 2 in ellipsoid model (a) and coordination configurations of H_5L ligand in 2 (b).

Fig. S4. 3D microporous framework of 2 and along *c*-axis. All the H atoms and guest molecules are omitted for clarity.

Fig. S5. PXRD patterns of 1-2 in (a-b) simulated from the X-ray single-crystal structure and experimental samples.

Fig. S6. TGA curves for 1 and 2.

Fig. S7. Luminescence spectra of 1 and free ligand in the solid state at room temperature.

Test	fluorescence intensity (nm)
1	1191.774
2	1191.398
3	1190.986
4	1192.047
5	1191.549
average	1191.551
standard deviation (σ)	0.399

Table S3. Standard Deviation (σ) calculation for the detection of Fe³⁺ for 1.

Table S4. A comparison of various fluorescent materials used for detecting Fe³⁺.

Fluorescent materials	Ksv/M ⁻¹	detection limit/M	Ref.
CUST-532	1.01×10^{4}	1.12×10^{-6}	1
${[Cd(L)(SDBA)(H_2O)] \cdot 0.5H_2O}_n$	$3.59 imes 10^4$	7.14×10^{-6}	2
${[Zn(\mu-HCIP)(\mu-pbix)] \cdot 2H_2O}_n$	6.87×10^{3}	3.72×10^{-6}	3
BUT-15	1.66×10^{4}	3.0×10^{-7}	4
Complex 1	0.700×104	1.2×10^{-5}	This
	9.799 ~ 10	1.2 ~ 10 °	work
$Eu(acac)_3 \subset Zn(C_{15}H_{12}NO_2)_2$	-	5×10^{-3}	5
$Eu(C_{22}H_{14}O_2)_3$	-	10-4	6
$\{[Zn(L)(dcdps)]\}_n$	7.004×10^{3}	6.21 × 10 ⁻⁵	7
$\{Zn(L)(bdc)\}_n$	9.066×10^{3}	4.45×10^{-5}	7
${[Cd(L)(oba)] \cdot 0.5DMF}_n$	4.984×10^{3}	11.52×10^{-5}	7
${[Cd(L)(bdc) \cdot 2H2O] 2DMF}_n$	6.387×10^{3}	6.36 × 10 ⁻⁵	7

Fig. S8. Multiple cycles for the fluorescence quenching of 1 by Fe^{3+} and recovery after washing by H₂O for several times.

Fig. S9. PXRD patterns of 1 treated by different $M(NO3)_X$ aqueous solutions. It indicated that 1 retains its framework after immersed in aqueous solution containing different cations.

Fig. S10. UV-Vis adsorption spectra of $M(NO_3)_X$ aqueous solutions, the excitation spectrum and the emission spectrum of 1.

Fig. S11. XPS spectra of O 1s for 1 and $Fe^{3+}-1$.

Table S5. Standard Deviation (σ) calculation for the detection of $Cr_2O_7^{2-}$ for 1.

Test	fluorescence intensity (nm)
1	1286.365
2	1285.998
3	1287.016
4	1285.899
5	1286.056
average	1286.267
standard deviation (σ)	0.906

Table S6. A comparison of various fluorescent materials used for detecting $Cr_2O_7^{2-}$.

Fluorescent materials	Ksv/M ⁻¹	detection limit/M	Ref.
$\{[Zn(L)(dcdps)]\}_n$	4.456×10^{4}	1.03×10^{-5}	7
$\{Zn(L)(bdc)\}_n$	7.716×10^{4}	5.55×10^{-6}	7
$\{ [Cd(L)(oba)] \cdot 0.5DMF \}_n$	6.145×10^{4}	7.36×10^{-6}	7
${[Cd(L)(bdc) \cdot 2H_2O] 2DMF}_n$	4.248×10^{4}	1.05×10^{-5}	7
Complex 1	1.455×10^{4}	1.86×10^{-4}	This work
${[Zn_2(Hbtc)_2(BTD-bpy)(MeOH)_2] \cdot MeOH}_n$	6.12×10 ³	2.38×10 ⁻³	8
$ \{ [Cd_3(HL)_2(H_2O)_3] \cdot 3H_2O \cdot 2CH_3 \\ CN \}_n $	6.99×10 ³	1.17×10^{-4}	9
${[Zn_2(1,4-ndc)_2(BTD-bpy)]\cdot 0.5MeOH\cdot H_2O}_n$	8.94×10 ³	0.75×10 ⁻³	8
$[Zn_2(tpeb)(bpdc)_2]$	1.12×10^{4}	1.04×10 ⁻³	10
$[Zn(L)_2] \cdot 2DMF$	1.25×10^{4}	1.45×10-3	11
[Zn(pdca)(bbibp) _{0.5}] _n	8.05×10 ³	3.7×10^{-6}	12

Fig. S12. Multiple cycles for the fluorescence quenching of 1 by $Cr_2O_7^{2-}$ and recovery after washing by H₂O for several times.

Fig. S13. PXRD patterns of 1 treated by different $K_x(anion)$ aqueous solutions. It indicated that 1 retains its framework after immersed in aqueous solution containing different anions.

Fig. S14. UV-Vis adsorption spectra of K(anion)x aqueous solutions and the excitation spectrum and the emission spectrum of 1.

Fig. S15. IR spectra of the as-synthesized 1-2 in (a-b).

(b)

References

- M.-Y. Fan, B. Sun, X. Li, Q. Pan, J. Sun, P. Ma, Zhong. Su, *Inorg. Chem.*, 2021, 60, 9148–9156
- S.-G. Chen, Z.-Z. Shi, L. Qin, H.-L. Jia, H.-G. Zheng, *Cryst. Growth Des.*, 2017, 17, 67–72.
- 3. M. Arici, Cryst. Growth Des., 2017, 17, 5499-5505.
- B. Wang, Q. Yang, C. Guo, Y.-X. Sun, L.-H. Xie, J.-R. Li, ACS Appl. Mater. Interfaces, 2017, 9, 10286–10295.
- Q. Tang, S.-X. Liu, Y.-W. Liu, J. Miao, S.-J. Li, L. Zhang, Z. Shi, Z.-P. Zheng, Inorg. Chem., 2013, 52, 2799–2801.
- G.-G. Hou, Y. Liu, Q.-K. Liu, J.-P. Ma, Y.-B. Dong, *Chem. Commun.*, 2011, 47, 10731–10733.
- F.-Y. Ge, G.-H. Sun, L. Meng, S.-S. Ren, H.-G. Zheng, *Cryst. Growth Des.*, 2020, 20, 1898–1904.

- Q. J. Jiang, J. Y. Lin, Z. J. Hu, V. K. S. Hsiao, M. Y. Chung and J. Y. Wu, *Cryst. Growth Des.*, 2021, 21, 2056-2067.
- W. Q. Tong, W. N. Liu, J. G. Cheng, P. F. Zhang, G. P. Li, L. Hou and Y. Y. Wang, *Dalton Trans.*, 2018, 47, 9466-9473.
- 10. B. B. Rath and J. J. Vittal, Inorg. Chem., 2020, 59, 8818-8826.
- 11. B. Li, Q. Q. Yan and G. P. Yong, J. Mater. Chem. C, 2020, 8, 11786-11795.
- 12. D. M. Zhang, C. G. Xu, Y. Z. Liu, C. B. Fan, B. Zhu and Y. H. Fan, *J. Solid State Chem.*, 2020, **290**, 121549.