Supporting Information

Synergistic construction of bifunctional and stable Pt/HZSM-5

based catalyst for efficient catalytic cracking of *n***-butane**

Huaqian Sun^a, Yaoyuan Zhang^a, Yuming Li^a, Weiyu Song^a, Qing Huan^b, Junling Lu^c, Yang Gao^a, Shanlei Han^a, Manglai Gao^a, Yingjie Ma^a, Hongjian Yu^a, Yajun Wang^a, Guoqing Cui^a, Zhen Zhao^a, Chunming Xu^a, Guiyuan Jiang^{a, *}

^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, China

b Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China

^c Department of Chemical Physics, University of Science and Technology of China, Hefei, China.

* Corresponding author (email: jianggy@cup.edu.cn)

Supplementary Figures

Fig. S1. (a) TEM image and (b) XRD pattern of PVP protected Pt nanoparticles

Fig. S2. X-ray diffraction patterns of catalysts

Herein, the numbers of ALD cycles of metal oxides in the first step of $TiO₂-Pt-TiO₂-Z5$ and Al_2O_3 -Pt-TiO₂-Z5 both are 20, and in the second step are 5.

Fig. S3. XPS spectra of Pt 4f of Pt-Z5 and Pt-TiO2-Z5 catalysts

The number of $TiO₂$ layers in Pt-TiO₂-Z5 is 20.

Fig. S4. CO adsorbed DRIFTS spectra of different catalysts

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of TiO² or Al2O³ layers during the second ALD step are 5.

Fig. S5. TEM images of (a) Pt-Z5 before calcination at 600 ^oC (b) Al2O3-Pt-Z5 before calcination at 600 ^oC (c) TiO2-Pt-Z5 before calcination at 600 ^oC and calcinated (d) Pt-Z5 (e) Al2O3-Pt-Z5 (f) TiO2-Pt-Z5 catalysts at 600 ^oC in air

Herein, the numbers of TiO₂ or Al₂O₃ layers of Al₂O₃-Pt-Z5 or TiO₂-Pt-Z5 are 5.

Fig. S6. The catalytic performance of the catalysts with different configurations for the catalytic cracking of n-butane at 600 ^oC

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of $TiO₂$ or $Al₂O₃$ layers during the second ALD step are 5. Tests were performed in the reactant gas of n-C₄H₁₀/N₂ (5 vol%, 40 mL⋅min⁻¹), and 0.2 g catalyst was used. Results show that butane conversion of Pt-TiO₂-Z5 catalyst is 9% higher than that of commercial HZSM-5. Besides, the difference in activity between Pt-TiO₂-Z5 and TiO₂-Z5 catalysts indicates that the addition of dehydrogenation component Pt could improve the catalytic performance. While catalysts (Pt-TiO₂-Z5, TiO₂-Pt-Z5 and Al₂O₃-Pt-Z5) with only one ALD step faded next to catalysts ($TiO₂-Pt-TiO₂-Z5$ and $Al₂O₃-Pt-TiO₂-$ Z5) with two ALD step in catalytic cracking of n-butane reaction, which proved the superiority of the former catalysts.

Fig. S7. Conversion and yield of ethene plus propene of catalysts in catalytic cracking of n-butane at 600 ^oC

Tests were performed in the reactant gas of n-C₄H₁₀/N₂ (5 vol%, 40 mL⋅min⁻¹), and 0.2 g catalyst was used. Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of TiO₂ or Al₂O₃ layers during the second ALD step are 7.

Fig. S8. The conversion of n-butane on the catalysts with various cycles in the first ALD step for the catalytic cracking of n-butane at 600 ^oC

Tests were performed in the reactant gas of n-C₄H₁₀/N₂ (5 vol%, 40 mL⋅min⁻¹), and 0.2 g catalyst was used. x $TiO₂-Z5$ represents that the catalyst was prepared by a x-cycle TiO² by ALD on commercial HZSM-5 (x=0, 5, 10, 20, 30, 40).

Fig. S9. The conversion of n-butane on the catalysts with different cycles in the second ALD step of Al2O³ in the catalytic cracking of n-butane at 600 ^oC

Tests were performed in the reactant gas of n-C₄H₁₀/N₂ (5 vol%, 40 mL⋅min⁻¹), and 0.2 g catalyst was used. Herein, the number of $TiO₂$ layers during the first ALD step is 20.

Fig. S10. The conversion of n-butane on the catalysts with different cycles of TiO² in the second ALD step for the catalytic cracking of n-butane at 600 ^oC

Tests were performed in the reactant gas of n-C₄H₁₀/N₂ (5 vol%, 40 mL⋅min⁻¹), and 0.2 g catalyst was used. Herein, the number of $TiO₂$ layers during the first ALD step is 20.

Fig. S11. The relationship between selectivity and conversion of series of catalysts (a) Z5 (b) Pt-Z5 (c) Pt-TiO2-Z5 (d) TiO2-Pt-TiO2-Z5 (e) Al2O3-Pt-TiO2-Z5 at 600 oC

Tests were all performed in the reactant gas of $n-C_4H_{10}/N_2$ (5 vol%), and the space velocity was changed during the tests. Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of $TiO₂$ or Al₂O₃ layers during the second ALD step are 7.

Fig. S12. Yield of ethene plus propene of catalysts for 60 h performance test in catalytic cracking of n-butane at 600 ^oC

Test was performed in the reactant gas of n -C₄H₁₀/N₂ (5 vol%, 40 mL·min⁻¹), and 0.2 g catalyst was used. Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of $TiO₂$ or $Al₂O₃$ layers during the second ALD step are 7.

Fig. S13. (a) X-ray diffraction patterns and (b) Infrared spectra of fresh and spent catalysts

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of TiO² or Al2O³ layers during the second ALD step are 7.

Fig. S14. TEM images of fresh catalysts (a) Pt-TiO2-Z5 (b) Al2O3-Pt-TiO2-Z5 (c) TiO2-Pt-TiO2-Z5 and spent catalysts (d) Pt-TiO2-Z5 (e) Al2O3-Pt-TiO2-Z5 (f) TiO2-Pt-TiO2-Z5 after 60 h time-on-stream reaction

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of TiO² or Al2O³ layers during the second ALD step are 7.

Fig. S15. TG curves of carbon deposition analysis on spent catalysts after 60 h reaction

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of $TiO₂$ or Al₂O₃ layers during the second ALD step are 7.

The TG results show the weight losses of $A_1O_3-Pt-TiO_2-Z5$, $TiO_2-Pt-TiO_2-Z5$, $Pt-TiO_2-$ Z5 and Z5 are 3.5 wt.%, 1.7 wt.%, 1.2 wt.% and 0.2 wt.%, respectively, indicating the catalyst with Al_2O_3 overcoat has the highest coke amount, which is probably resulting from its high conversion.

Fig. S16. Raman spectra of the spent catalysts after 60 h reaction

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of $TiO₂$ or Al₂O₃ layers during the second ALD step are 7.

Results indicate that all the catalysts show two carbon deposition peaks, as D band $(1370-1410 \text{ cm}^{-1})$ and G band $(1590-1620 \text{ cm}^{-1})$, correspond to disordered structure and sp²-hybridized graphite carbon species, respectively^[S1]. From the results, Al_2O_3 -Pt- $TiO₂ - Z5$ has the highest proportion of I_D/I_G , indicating highest proportion of disorderly carbon. A lower Raman shift observed on Al_2O_3 -Pt-TiO₂-Z5 catalyst in Raman spectra also means a higher disordered degree. In addition, $Pt-TiO₂-Z5$ has the largest coke particles size as the half peak width in G band is the widest.

Tests were performed in a feed of 5% C_4H_{10} in N₂. Every cycle maintains 400 minutes. Herein, the number of TiO₂ layers during the first ALD step is 20, and the number of Al2O³ layers during the second ALD step is 7.

Fig. S18. DRIFT spectra of CO molecules adsorbed on catalysts with a series of (a) Al2O³ and (b) TiO² overcoats

The sintering-resistance ability of Al_2O_3 under 3-cycle overcoat is better than that of TiO₂. Sintering occurred on 1c TiO₂ Pt-TiO₂-Z5 and 3c TiO₂ Pt-TiO₂-Z5 catalysts, while not on 1c Al₂O₃ Pt-TiO₂-Z₅ and 3c Al₂O₃ Pt-TiO₂-Z₅ catalysts. This is due to island growth mechanism in ALD early stage^[S2], where Al_2O_3 has a better property to extend and form a membrane than $TiO₂$ during calcination process. Herein, the number of $TiO₂$ layers during the first ALD step is 20.

Fig. S19. DRIFTS spectra of CO molecules adsorbed on catalysts before and after reduction process in H2/N² (5 vol%) at 500 ^oC for 1 h

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of $TiO₂$ or Al₂O₃ layers introduced in the second ALD step of TiO₂-Pt-TiO₂-Z5 and Al₂O₃-Pt-TiO₂-Z5 are both 7.

Supplementary Tables

Sample	S_{BET} m ² /g	V_{ads} cm ³ /g	V_{des} cm ³ /g	D_{ads} nm	D_{des} nm
Z5	309.3	0.15	0.14	5.7	6.2
$TiO2-Z5$	303.5	0.12	0.13	5.1	5.8
$Pt-TiO2-Z5$	281.5	0.11	0.09	4.9	8.6
$TiO2-Pt-TiO2-Z5$					
(before calcination)	252.8	0.11	0.11	5.3	5.2
$TiO2-Pt-TiO2-Z5$					
(after calcination)	280.5	0.12	0.12	4.9	5.2
Al_2O_3 -Pt-TiO ₂ -Z5					
(before calcination)	246.4	0.10	0.10	4.8	4.7
Al_2O_3 -Pt-TiO ₂ -Z5					
(after calcination)	283.6	0.11	0.11	4.7	4.9

Tables S1. Textural properties of different catalysts

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of TiO² or Al2O³ layers during the second ALD step are 5.

Assignment	Wavenumber (cm^{-1})	
Terminal Si-OH	3745	
-OH in B acid	3610	
Skeletal vibration	1880 1885 2010	
Inner v_{as} T-O-T	1101	
Outside v_{as} T-O-T	1231	
Outside v_sT-O-T	799	
penta-cycles	548	

Table S2. Assignments for the IR bands of HZSM-5

Sample	D band		G band		
	Intensity	position/ cm^{-1}	Intensity	position/cm ⁻¹	I_D/I_G
Z ₅	75.6	1370	211.7	1612	0.357
$Pt-TiO2-Z5$	73.4	1391	195.3	1604	0.376
$Al_2O_3-Pt-TiO_2-Z5$	74.0	1413	162.0	1597	0.457
$TiO2-Pt-TiO2-Z5$	74.4	1408	321.4	1612	0.231

Table S3. Raman results of spent catalysts

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of TiO² or Al2O³ layers during the second ALD step are 7.

	Pt Content		Ti Content Al Content	Si Content
Sample	$(\%)$	$(\%)$	$(\%)$	$\left(\% \right)$
$Pt-Z.5$	0.31	\mathcal{L}	0.64	43.2
$Pt-TiO2-Z5$	0.32	3.1	0.59	39.7
$TiO2-Pt-TiO2-Z5$	0.29	3.7	0.64	37.9
Al_2O_3 -Pt-TiO ₂ -Z5	0.29	2.9	1.57	40.6

Table S4. ICP results of different catalysts

Herein, the number of TiO₂ layers during the first ALD step is 20, and the numbers of TiO₂ or Al₂O₃ layers during the second ALD step are 7.

Sample	Weak Acid Peak Area	Strong Acid Peak Area
Z5.	1268	734
$Pt-TiO2-Z5$	1279	832
$TiO2-Pt-TiO2-Z5$	1178	684
Al_2O_3 -Pt-TiO ₂ -Z5	1203	778

Table S5. NH3-TPD results of different catalysts

330 °C was picked as the boundary between strong acid and weak acid.

Herein, the number of $TiO₂$ layers during the first ALD step is 20, and the numbers of $TiO₂$ or Al₂O₃ layers during the second ALD step are 7.

Supplementary References

- [S1] N. R. Ostyn, J. A. Steele, D. M. Prins, S. P. Sree, C. V. Chandran, W. Wangermez, G. Vanbutsele, G. W. Seo, M. B. J. Roeffaers, E. Breynaert and J. A. Martens, *Nanoscale Adv.*, 2019, **1,** 2873-2880.
- [S2] B. Gong and G. N. Parsons, *J. Mater. Chem.*, 2012, **22**, 15672-15682.