## Supporting Information

#### Synergistic construction of bifunctional and stable Pt/HZSM-5

based catalyst for efficient catalytic cracking of *n*-butane

Huaqian Sun<sup>a</sup>, Yaoyuan Zhang<sup>a</sup>, Yuming Li<sup>a</sup>, Weiyu Song<sup>a</sup>, Qing Huan<sup>b</sup>, Junling Lu<sup>c</sup>, Yang Gao<sup>a</sup>, Shanlei Han<sup>a</sup>, Manglai Gao<sup>a</sup>, Yingjie Ma<sup>a</sup>, Hongjian Yu<sup>a</sup>, Yajun Wang<sup>a</sup>, Guoqing Cui<sup>a</sup>, Zhen Zhao<sup>a</sup>, Chunming Xu<sup>a</sup>, Guiyuan Jiang<sup>a,\*</sup>

<sup>a</sup> State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, China

<sup>b</sup> Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China

<sup>c</sup> Department of Chemical Physics, University of Science and Technology of China, Hefei, China.

\*Corresponding author (email: jianggy@cup.edu.cn)

# **Supplementary Figures**



Fig. S1. (a) TEM image and (b) XRD pattern of PVP protected Pt nanoparticles



Fig. S2. X-ray diffraction patterns of catalysts

Herein, the numbers of ALD cycles of metal oxides in the first step of  $TiO_2$ -Pt- $TiO_2$ -Z5 and  $Al_2O_3$ -Pt- $TiO_2$ -Z5 both are 20, and in the second step are 5.



Fig. S3. XPS spectra of Pt 4f of Pt-Z5 and Pt-TiO<sub>2</sub>-Z5 catalysts

The number of  $TiO_2$  layers in Pt-TiO<sub>2</sub>-Z5 is 20.



Fig. S4. CO adsorbed DRIFTS spectra of different catalysts



Fig. S5. TEM images of (a) Pt-Z5 before calcination at 600 °C (b) Al<sub>2</sub>O<sub>3</sub>-Pt-Z5 before calcination at 600 °C (c) TiO<sub>2</sub>-Pt-Z5 before calcination at 600 °C and calcinated (d) Pt-Z5 (e) Al<sub>2</sub>O<sub>3</sub>-Pt-Z5 (f) TiO<sub>2</sub>-Pt-Z5 catalysts at 600 °C in air

Herein, the numbers of  $TiO_2$  or  $Al_2O_3$  layers of  $Al_2O_3$ -Pt-Z5 or  $TiO_2$ -Pt-Z5 are 5.



Fig. S6. The catalytic performance of the catalysts with different configurations for the catalytic cracking of n-butane at 600 °C

Herein, the number of TiO<sub>2</sub> layers during the first ALD step is 20, and the numbers of TiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub> layers during the second ALD step are 5. Tests were performed in the reactant gas of n-C<sub>4</sub>H<sub>10</sub>/N<sub>2</sub> (5 vol%, 40 mL·min<sup>-1</sup>), and 0.2 g catalyst was used. Results show that butane conversion of Pt-TiO<sub>2</sub>-Z5 catalyst is 9% higher than that of commercial HZSM-5. Besides, the difference in activity between Pt-TiO<sub>2</sub>-Z5 and TiO<sub>2</sub>-Z5 catalysts indicates that the addition of dehydrogenation component Pt could improve the catalytic performance. While catalysts (Pt-TiO<sub>2</sub>-Z5, TiO<sub>2</sub>-Pt-Z5 and Al<sub>2</sub>O<sub>3</sub>-Pt-Z5) with only one ALD step faded next to catalysts (TiO<sub>2</sub>-Pt-TiO<sub>2</sub>-Z5 and Al<sub>2</sub>O<sub>3</sub>-Pt-TiO<sub>2</sub>-Z5) with two ALD step in catalytic cracking of n-butane reaction, which proved the superiority of the former catalysts.



Fig. S7. Conversion and yield of ethene plus propene of catalysts in catalytic cracking of n-butane at 600 °C

Tests were performed in the reactant gas of  $n-C_4H_{10}/N_2$  (5 vol%, 40 mL·min<sup>-1</sup>), and 0.2 g catalyst was used. Herein, the number of TiO<sub>2</sub> layers during the first ALD step is 20, and the numbers of TiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub> layers during the second ALD step are 7.



Fig. S8. The conversion of n-butane on the catalysts with various cycles in the first ALD step for the catalytic cracking of n-butane at 600 °C

Tests were performed in the reactant gas of  $n-C_4H_{10}/N_2$  (5 vol%, 40 mL·min<sup>-1</sup>), and 0.2 g catalyst was used. x TiO<sub>2</sub>-Z5 represents that the catalyst was prepared by a x-cycle TiO<sub>2</sub> by ALD on commercial HZSM-5 (x=0, 5, 10, 20, 30, 40).



Fig. S9. The conversion of n-butane on the catalysts with different cycles in the second ALD step of Al<sub>2</sub>O<sub>3</sub> in the catalytic cracking of n-butane at 600 °C

Tests were performed in the reactant gas of  $n-C_4H_{10}/N_2$  (5 vol%, 40 mL·min<sup>-1</sup>), and 0.2 g catalyst was used. Herein, the number of TiO<sub>2</sub> layers during the first ALD step is 20.



Fig. S10. The conversion of n-butane on the catalysts with different cycles of TiO<sub>2</sub> in the second ALD step for the catalytic cracking of n-butane at 600 °C

Tests were performed in the reactant gas of  $n-C_4H_{10}/N_2$  (5 vol%, 40 mL·min<sup>-1</sup>), and 0.2 g catalyst was used. Herein, the number of TiO<sub>2</sub> layers during the first ALD step is 20.



Fig. S11. The relationship between selectivity and conversion of series of catalysts (a) Z5 (b) Pt-Z5 (c) Pt-TiO<sub>2</sub>-Z5 (d) TiO<sub>2</sub>-Pt-TiO<sub>2</sub>-Z5 (e) Al<sub>2</sub>O<sub>3</sub>-Pt-TiO<sub>2</sub>-Z5 at 600 °C

Tests were all performed in the reactant gas of  $n-C_4H_{10}/N_2$  (5 vol%), and the space velocity was changed during the tests. Herein, the number of TiO<sub>2</sub> layers during the first ALD step is 20, and the numbers of TiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub> layers during the second ALD step are 7.



Fig. S12. Yield of ethene plus propene of catalysts for 60 h performance test in catalytic cracking of n-butane at 600 °C

Test was performed in the reactant gas of n-C<sub>4</sub>H<sub>10</sub>/N<sub>2</sub> (5 vol%, 40 mL·min<sup>-1</sup>), and 0.2 g catalyst was used. Herein, the number of TiO<sub>2</sub> layers during the first ALD step is 20, and the numbers of TiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub> layers during the second ALD step are 7.



Fig. S13. (a) X-ray diffraction patterns and (b) Infrared spectra of fresh and spent catalysts



Fig. S14. TEM images of fresh catalysts (a) Pt-TiO<sub>2</sub>-Z5 (b) Al<sub>2</sub>O<sub>3</sub>-Pt-TiO<sub>2</sub>-Z5 (c) TiO<sub>2</sub>-Pt-TiO<sub>2</sub>-Z5 and spent catalysts (d) Pt-TiO<sub>2</sub>-Z5 (e) Al<sub>2</sub>O<sub>3</sub>-Pt-TiO<sub>2</sub>-Z5 (f) TiO<sub>2</sub>-Pt-TiO<sub>2</sub>-Z5 after 60 h time-on-stream reaction



Fig. S15. TG curves of carbon deposition analysis on spent catalysts after 60 h reaction

The TG results show the weight losses of  $Al_2O_3$ -Pt-Ti $O_2$ -Z5, Ti $O_2$ -Pt-Ti $O_2$ -Z5, Pt-Ti $O_2$ -Z5 and Z5 are 3.5 wt.%, 1.7 wt.%, 1.2 wt.% and 0.2 wt.%, respectively, indicating the catalyst with  $Al_2O_3$  overcoat has the highest coke amount, which is probably resulting from its high conversion.



Fig. S16. Raman spectra of the spent catalysts after 60 h reaction

Results indicate that all the catalysts show two carbon deposition peaks, as D band (1370-1410 cm<sup>-1</sup>) and G band (1590-1620 cm<sup>-1</sup>), correspond to disordered structure and sp<sup>2</sup>-hybridized graphite carbon species, respectively<sup>[S1]</sup>. From the results, Al<sub>2</sub>O<sub>3</sub>-Pt-TiO<sub>2</sub>-Z5 has the highest proportion of I<sub>D</sub>/I<sub>G</sub>, indicating highest proportion of disorderly carbon. A lower Raman shift observed on Al<sub>2</sub>O<sub>3</sub>-Pt-TiO<sub>2</sub>-Z5 catalyst in Raman spectra also means a higher disordered degree. In addition, Pt-TiO<sub>2</sub>-Z5 has the largest coke particles size as the half peak width in G band is the widest.





Tests were performed in a feed of 5%  $C_4H_{10}$  in N<sub>2</sub>. Every cycle maintains 400 minutes. Herein, the number of TiO<sub>2</sub> layers during the first ALD step is 20, and the number of Al<sub>2</sub>O<sub>3</sub> layers during the second ALD step is 7.



Fig. S18. DRIFT spectra of CO molecules adsorbed on catalysts with a series of (a) Al<sub>2</sub>O<sub>3</sub> and (b) TiO<sub>2</sub> overcoats

The sintering-resistance ability of  $Al_2O_3$  under 3-cycle overcoat is better than that of TiO<sub>2</sub>. Sintering occurred on 1c TiO<sub>2</sub> Pt-TiO<sub>2</sub>-Z5 and 3c TiO<sub>2</sub> Pt-TiO<sub>2</sub>-Z5 catalysts, while not on 1c  $Al_2O_3$  Pt-TiO<sub>2</sub>-Z5 and 3c  $Al_2O_3$  Pt-TiO<sub>2</sub>-Z5 catalysts. This is due to island growth mechanism in ALD early stage<sup>[S2]</sup>, where  $Al_2O_3$  has a better property to extend and form a membrane than TiO<sub>2</sub> during calcination process. Herein, the number of TiO<sub>2</sub> layers during the first ALD step is 20.



Fig. S19. DRIFTS spectra of CO molecules adsorbed on catalysts before and after reduction process in H<sub>2</sub>/N<sub>2</sub> (5 vol%) at 500 °C for 1 h

Herein, the number of TiO<sub>2</sub> layers during the first ALD step is 20, and the numbers of TiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub> layers introduced in the second ALD step of TiO<sub>2</sub>-Pt-TiO<sub>2</sub>-Z5 and Al<sub>2</sub>O<sub>3</sub>-Pt-TiO<sub>2</sub>-Z5 are both 7.

## **Supplementary Tables**

| Sample                                                  | $S_{BET} m^2/g$ | V <sub>ads</sub> cm <sup>3</sup> /g | V <sub>des</sub> cm <sup>3</sup> /g | D <sub>ads</sub> nm | D <sub>des</sub> nm |
|---------------------------------------------------------|-----------------|-------------------------------------|-------------------------------------|---------------------|---------------------|
| Z5                                                      | 309.3           | 0.15                                | 0.14                                | 5.7                 | 6.2                 |
| TiO <sub>2</sub> -Z5                                    | 303.5           | 0.12                                | 0.13                                | 5.1                 | 5.8                 |
| Pt-TiO <sub>2</sub> -Z5                                 | 281.5           | 0.11                                | 0.09                                | 4.9                 | 8.6                 |
| TiO <sub>2</sub> -Pt-TiO <sub>2</sub> -Z5               |                 |                                     |                                     |                     |                     |
| (before calcination)                                    | 252.8           | 0.11                                | 0.11                                | 5.3                 | 5.2                 |
| TiO <sub>2</sub> -Pt-TiO <sub>2</sub> -Z5               |                 |                                     |                                     |                     |                     |
| (after calcination)                                     | 280.5           | 0.12                                | 0.12                                | 4.9                 | 5.2                 |
| Al <sub>2</sub> O <sub>3</sub> -Pt-TiO <sub>2</sub> -Z5 |                 |                                     |                                     |                     |                     |
| (before calcination)                                    | 246.4           | 0.10                                | 0.10                                | 4.8                 | 4.7                 |
| Al <sub>2</sub> O <sub>3</sub> -Pt-TiO <sub>2</sub> -Z5 |                 |                                     |                                     |                     |                     |
| (after calcination)                                     | 283.6           | 0.11                                | 0.11                                | 4.7                 | 4.9                 |

Tables S1. Textural properties of different catalysts

| Assignment                    | Wavenumber (cm <sup>-1</sup> ) |  |
|-------------------------------|--------------------------------|--|
| Terminal Si-OH                | 3745                           |  |
| -OH in B acid                 | 3610                           |  |
| Skeletal vibration            | 1880 1885 2010                 |  |
| Inner v <sub>as</sub> T-O-T   | 1101                           |  |
| Outside v <sub>as</sub> T-O-T | 1231                           |  |
| Outside vsT-O-T               | 799                            |  |
| penta-cycles                  | 548                            |  |

Table S2. Assignments for the IR bands of HZSM-5

| Course 1                                                | D band    |                           | G band    |                           | T /T  |
|---------------------------------------------------------|-----------|---------------------------|-----------|---------------------------|-------|
| Sample                                                  | Intensity | position/cm <sup>-1</sup> | Intensity | position/cm <sup>-1</sup> | ID/IG |
| Z5                                                      | 75.6      | 1370                      | 211.7     | 1612                      | 0.357 |
| Pt-TiO <sub>2</sub> -Z5                                 | 73.4      | 1391                      | 195.3     | 1604                      | 0.376 |
| Al <sub>2</sub> O <sub>3</sub> -Pt-TiO <sub>2</sub> -Z5 | 74.0      | 1413                      | 162.0     | 1597                      | 0.457 |
| TiO <sub>2</sub> -Pt-TiO <sub>2</sub> -Z5               | 74.4      | 1408                      | 321.4     | 1612                      | 0.231 |

Table S3. Raman results of spent catalysts

|                                                         | Pt Content | Ti Content | Al Content | Si Content |
|---------------------------------------------------------|------------|------------|------------|------------|
| Sample                                                  | (%)        | (%)        | (%)        | (%)        |
| Pt-Z5                                                   | 0.31       | 0          | 0.64       | 43.2       |
| Pt-TiO <sub>2</sub> -Z5                                 | 0.32       | 3.1        | 0.59       | 39.7       |
| TiO <sub>2</sub> -Pt-TiO <sub>2</sub> -Z5               | 0.29       | 3.7        | 0.64       | 37.9       |
| Al <sub>2</sub> O <sub>3</sub> -Pt-TiO <sub>2</sub> -Z5 | 0.29       | 2.9        | 1.57       | 40.6       |

Table S4. ICP results of different catalysts

| Sample                                                  | Weak Acid Peak Area | Strong Acid Peak Area |
|---------------------------------------------------------|---------------------|-----------------------|
| Z5                                                      | 1268                | 734                   |
| Pt-TiO <sub>2</sub> -Z5                                 | 1279                | 832                   |
| TiO <sub>2</sub> -Pt-TiO <sub>2</sub> -Z5               | 1178                | 684                   |
| Al <sub>2</sub> O <sub>3</sub> -Pt-TiO <sub>2</sub> -Z5 | 1203                | 778                   |

Table S5. NH<sub>3</sub>-TPD results of different catalysts

330 °C was picked as the boundary between strong acid and weak acid.

### **Supplementary References**

- [S1] N. R. Ostyn, J. A. Steele, D. M. Prins, S. P. Sree, C. V. Chandran, W. Wangermez, G. Vanbutsele, G. W. Seo, M. B. J. Roeffaers, E. Breynaert and J. A. Martens, *Nanoscale Adv.*, 2019, 1, 2873-2880.
- [S2] B. Gong and G. N. Parsons, J. Mater. Chem., 2012, 22, 15672-15682.