Electronic Supplementary Information

Controllable synthesis of CoFe₂Se₄/NiCo₂Se₄ hybrid nanotubes with heterointerfaces and improved oxygen evolution reaction performance

Huan Wang, ‡ Zhonghua Sun, ‡ Xiaoran Zou, ‡ Jianhai Ren, and Chun-yang Zhang *

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.

‡ These authors contributed equally to this work.

* E-mail: cyzhang@sdnu.edu.cn

Fig. S1. (a, b) SEM images, (c, d) TEM images, (e) EDS image and (e) TGA result of NiCo-Asp NFs. The EDS and TGA results confirm that the as-prepared nanofibers are composed by metals and organics. And the atomic ratio of Co and Ni is 2: 0.95, which is close to the experimental proportion.

Fig. S2. EDS images of (a) FeNiCo-Asp NTs and (b) CFSe/NCSe HNTs.

Fig. S3. (a, b) SEM images and (c, d) TEM images of Co-Asp NFs.

Fig. S4. (a, b) SEM images and (c, d) TEM images of CoFe-Asp NTs.

Fig. S5. TGA curves of NiCo-Asp NFs and FeNiCo-Asp NTs. The TGA measurements of NiCo-Asp NFs and FeNiCo-Asp NTs were performed under air flow at a heating rate of 10 °C·min⁻¹ from 30 °C to 700 °C. The weight loss of 12.3% below 170 °C can be attributed to the evaporation of the absorbed organic residues (e.g., ethanol) or the bound water on the surface of samples. The NiCo-Asp NFs and FeNiCo-Asp NTs were completely decomposed at 270 °C and 300 °C, respectively.

Fig. S6. XRD pattern of CFSe and NCSe NTs.

Fig. S7. (a, b) SEM images, (c) TEM image and (d) HRTEM image of CFSe NTs. The lattice fringe

spacing of 0.336 nm is corresponding to (110) plane of CoFe₂Se₄.

Fig. S8. (a, b) SEM images, (c) TEM image and (d) HRTEM image of NCSe NTs. The lattice fringe

spacing of 0.269 nm is corresponding to (111) plane of NiCo₂Se₄.

Fig. S9. Se 3d XPS spectra of CFSe/NCSe HNTs (A), CFSe NTs (B) and NCSe NTs (C). The peaks covered by cyan and magenta are assigned to Se $3d_{5/2}$ and Se $3d_{3/2}$, respectively. ¹ The difference value for CFSe/NCSe HNTs is larger than that of CFSe NTs, and NCSe NTs, indicating the strong interaction in the interface of CFSe-NCSe in CFSe/NCSe HNTs.

Fig. S10. CV curves of (a) $RuO_2 NPs$, (b) CFSe/NCSe HNTs, (c) NCSe NTs and (d) CFSe NTs at

different scan rates.

Fig. S11. Nyquist plots of the CFSe/NCSe HNTs, CFSe NTs and NCSe NTs.

Fig. S12. (a) SEM image and (b) TEM image and XRD pattern of CFSe/NCSe HNTs after OER

testing.

Fig. S13. Chronoamperometric (i-t) curve of the CFSe/NCSe HNTs, CFSe NTs and NCSe NTs at the current density of about 20 mA cm⁻². After testing for 50 h, the current density of the three

samples still can maintain more than 80 %.

Fig. S14. Optimized structure of (a) NiCo₂Se₄, (b) CoFe₂Se₄ and (c) CoFe₂Se₄/NiCo₂Se₄.

Fig. S15. (a) The DOSs of CFSe NTs, the ε_d of Fe and Co in CFSe NTs are -0.69 and -1.46 eV, respectively. (b) The DOSs of NCSe NTs, the ε_d of Ni and Co in NCSe NTs are -1.06 and -1.62 eV, respectively.

Electrocatalysts	η value (mV)	Tafel slopes	Current	Ref.
	at 10 mA·cm ⁻²	$(mV \cdot dec^{-1})$	collector	
(Ni, Co) _{0.85} Se	255	79	carbon cloth	1
FeCoNi-NS 2D	251	58	glass carbon	2
(Ni,Co)Se ₂	256	74	carbon cloth	3
N-NiCo ₂ S ₄ /CoO	227	66.8	Ni foam	4
Co-Fe-P-Se/NC	270	39	glass carbon	5
CoSe ₂ /FeSe ₂	240	44	Ni foam	6
Fe, Al-NiSe ₂ /rGO	272	48	glass carbon	7
Ni ₃ S ₄	257	67	Ni foam	8
Ni _{0.6} Co _{0.4} Se	249	53	Ni foam	9
O-CoSe ₂ -HNT	252	60	glass carbon	10
NiFe/Co ₉ S ₈ /CC	219	55	carbon cloth	11
NiSe ₂ /CoSe ₂	286	53	glass carbon	12
Fe-doped NiSe ₂	268	69	glass carbon	13
CoTe ₂	357	32	glass carbon	14
CoSe ₂ -CoO/NCF	279	44.6	carbon cloth	15
CoSe/FeSe ₂	281	34.3	glass carbon	16
CFSe/NCSe HNTs	224	48.1	glass carbon	This work

 Table S1. Comparison of the electrochemical OER properties of the CFSe/NCSe HNTs with those

 of the reported transition metal chalcogenides.

References:

- C. Xia, Q. Jiang, C. Zhao, M. N. Hedhili and H. N. Alshareef, *Adv. Mater.*, 2016, 28, 77-85.
- J. Y. Jiang, L. Y. Chang, W. C. Zhao, Q. Y. Tian and Q. Xu, *Chem. Commun.*, 2019, 55, 10174-10177.
- W. J. Song, X. Teng, Y. Y. Liu, J. Y. Wang, Y. L. Niu, X. M. He, C. Zhang and Z. F. Chen, Nanoscale, 2019, 11, 6401-6409.
- B. He, J. J. Song, X. Y. Li, C. Y. Xu, Y. B. Li, Y. W. Tang, Q. L. Hao, H. K. Liu and Z. Su, Nanoscale, 2020, DOI: 10.1039/d0nr07120j
- 5. H. B. Wu, J. Wang, J. Yan, Z. X. Wu and W. Jin, *Nanoscale*, 2019, **11**, 20144-20150.
- C. Y. Xu, Q. H. Li, J. L. Shen, Z. Yuan, J. Q. Ning, Y. J. Zhong, Z. Y. Zhang and Y. Hu, Nanoscale, 2019, 11, 10738-10745.
- L. Chen, H. Jang, M. G. Kim, Q. Qin, X. Liu and J. Cho, *Nanoscale*, 2020, 12, 13680-13687.
- W. K., L. J. S, Z. C., Z. T., A. J., Lu X. H., M. B.W., Z. X. and F. J., *Adv. Funct. Mater.*, 2019, 29, 1900315.
- 9. Z. Feng, E. Wang, S. Huang and J. Liu, *Nanoscale*, 2020, **12**, 4426-4434.
- B. M. Jia, Z. Q. Xue, Q. Liu, Q. L. Liu, K. Liu, M. Liu, T. S. Chan, Y. L. Li, Z. J. Li, C. Y.
 Su and G. Q. Li, *J. Mater. Chem. A*, 2019, 7, 15073-15078.
- C. Zhan, Z. Liu, Y. Zhou, M. Guo, X. Zhang, J. Tu, L. Ding and Y. Cao, *Nanoscale*, 2019, 11, 3378-3385.
- 12. X. R. Zheng, X. P. Han, Y. H. Cao, Y. Zhang, D. Nordlund, J. H. Wang, S. L. Chou, H. Liu,

L. L. Li, C. Zhong, Y. D. Deng and W. B. Hu, Adv. Mater., 2020, 32, 2000607.

- C. Gu, S. J. Hu, X. S. Zheng, M. R. Gao, Y. R. Zheng, L. Shi, Q. Gao, X. Zheng, W. S. Chu,
 H. B. Yao, J. F. Zhu and S. H. Yu, *Angew. Chem. Int. Ed.*, 2018, 57, 4020-4024.
- Q. Gao, C. Q. Huang, Y. M. Ju, M. R. Gao, J. W. Liu, D. An, C. H. Cui, Y. R. Zheng, W. X.
 Li and S. H. Yu, *Angew. Chem. Int. Ed.*, 2017, 56, 7769-7773.
- T. Zhang, J. Yu, H. Guo, J. Y. Liu, Q. Liu, D. L. Song, R. R. Chen, R. M. Li, P. L. Liu and J. Wang, *Electrochimica Acta*, 2020, **356**, 136822.
- Y. Zhang, J. Xu, L. Lv, A. Wang, B. Zhang, Y. Ding and C. Wang, *Nanoscale*, 2020, 12, 10196-10204.