Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Highly stable and efficient cathode-buffer-layer-free inverted perovskite solar cells

Yong Ryun Kim^a, Chang Mok Oh^b, Chang Jae Yoon^a, Ju-Hyeon Kim^c, Kiyoung Park^c, Kwanghee Lee^{a,c*}, In-Wook Hwang^{b*}, Heejoo Kim^{d*}

^aResearch Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
^bAdvanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
^cHeeger Center for Advanced Materials (HCAM), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
^dGraduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Korea

Corresponding Author

* E-mail: klee@gist.ac.kr (Kwanghee Lee), hwangiw@gist.ac.kr (In-wook Hwang),

Heejook@gist.ac.kr (Heejoo Kim),

Fig S1. – The *J-V* of the I-PeSCs fabricated using various wt.% $PC_{61}BM$ dispersed in 1wt% of PMMA (the volume ratio 10 vs 1); Device structures of ITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM:PMMA/Cu were used

Table S1. – Photovoltaic device parameters for I-PeSCs fabricated using the devicestructuresofITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM/CuandITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM:PMMA/Cu

ETLs	Spin-coating speed (rpm)	Sweep Direction	V _{oc} (V)	J _{sc} (mA/cm ²)	FF	PCE (%)
PC ₆₁ BM (1wt%):PMMA	2000	Forward	1.04	17.78	0.62	11.42
(1wt%)	2000	Reverse	1.03	17.42	0.63	11.24
PC ₆₁ BM (2wt%):PMMA	2000	Forward	1.07	19.67	0.78	16.53
(1wt%)		Reverse	1.07	19.59	0.79	16.55
PC ₆₁ BM (4wt%):PMMA (1wt%) 2000	Forward	1.06	19.86	0.72	15.19	
	2000	Reverse	1.06	19.88	0.74	15.61

Fig S2. – Statistical distribution of the device parameters for I-PeSCs fabricated using various wt.% PMMA in $PC_{61}BM$; (a) V_{oc} , (b) FF, (c) J_{sc} , and (d) PCE. Device structures of ITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM and ITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM:PMMA/Cu were used

 Table S2. – Photovoltaic device parameters for I-PeSCs fabricated using the device

 structures
 of
 ITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM/Cu
 and
 ITO/PTAA/PFN

 Br/MAPbI₃/PC₆₁BM:

PMMA/Cu

PMMA (wt%)	V _{oc} (V)	J_{sc} (mA/cm ²)	FF	PCE (%)
PC ₆₁ BM	1.068±0.011	19.37±0.19	0.66±0.01	13.15±0.56
0.25	1.077±0.006	19.45±0.36	0.72±0.02	15.74±0.59
0.5	1.094±0.012	19.47±0.49	0.74±0.02	16.05±0.58
1.0	1.104±0.012	19.94±0.71	0.76±0.01	16.72±0.728
2.0	1.113±0.015	18.78±0.69	0.74±0.02	16.02±0.94
4.0	1.106±0.015	18.94±0.60	0.71±0.02	15.30±1.06

Fig S3. – AFM topographic images obtained from the PMMA sides of (a) ITO/PTAA/PFN-Br/MAPbI₃/PMMA(2 wt.%) and (b) ITO/PTAA/PFN-Br/MAPbI₃/PMMA(4 wt.%) films.

Table S3. – Photovoltaic device parameters for I-PeSCs fabricated using device structures of ITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM/Cu, ITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM/Cu, and ITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM:PMMA/Cu

ETL	Electrode	Sweep Direction	V _{oc} (V)	J _{sc} (mA/cm ²)	FF	PCE (%)	IPCE
		Forward	1.06	19.34	0.66	13.49	
PC ₆₁ BM	Cu Rev	Reverse	erse 1.07	19.39	0.66	13.55	18.7
			1.00	21.25	0.55	(13.20)	
PC ₆₁ BM/BCP	Cu	Forward	1.09	21.25	0.77	(17.64)	21.02
		Reverse	1.09	21.12	0.77	(17.64)	
PC ₆₁ BM:PMMA	A Cu	Forward	1.12	20.83	0.78	18.21 (17.73)	
		Reverse	1.12	20.80	0.79	18.38 (18.00)	21.07

Fig S4. – (a) *J-V* and (b) IPCE plots for the best performance I-PeSCs fabricated using $PC_{61}BM$, $PC_{61}BM/BCP$, and $PC_{61}BM$:PMMA as ETLs

Fig S5. – UV-vis absorption spectra for films of ITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM and ITO/PTAA/PFN-Br/MAPbI₃/PC₆₁BM:PMMA fabricated using various concentrations of PMMA in $PC_{61}BM$

Table S4. - Energy levels obtained from ultraviolet photoelectron spectra (UPS) for Cuelectrode with $PC_{61}BM$ and $PC_{61}BM$:PMMA

Sample	E _{cut-off} (eV)	IE- (hv – E _{cut-off})	E _v (eV)	hv – E _{cut-off} (eV)
Cu/PC ₆₁ BM	16.22	0.79	5.77	4.98
Cu/PC ₆₁ BM:PMMA	17.08	1.92	6.04	4.12

Table S5. – Parameters obtained from measurement of impedances in I-PeSCs fabricatedusing $PC_{61}BM$ and $PC_{61}BM$:PMMA as ETLs

ETL	$\mathrm{R}_{\mathrm{p}}\left(\Omega ight)$	$R_{s}(\Omega)$	CPE.
PC ₆₁ BM	273.43	26.93	0.801
PC ₆₁ BM:PMMA	44.10	24.21	0.914

Fig S6. – Energy levels characterized by measurement of Kelvin probe for films of $ITO/PC_{61}BM$ and $ITO/PC_{61}BM$:PMMA

Table S6. – Trap density ($N_{trap-density}$) and mobility (α) calculated from the data plots for electron-only devices fabricated using the structures of C₆₀/MAPbI₃/PC₆₁BM/Cu and C₆₀/MAPbI₃/PC₆₁BM:PMMA/Cu. The trap-filled-limit voltages (V_{TFL}) for the electron-only devices fabricated using PCBM and PC₆₁BM:PMMA as ETLs are 1.025 eV and 0.8 eV, respectively. The entire trap density ($N_{trap-density}$) in the MAPbI₃ layers is calculated by using

the equation $N_{trap-density} = \frac{2\varepsilon_r \varepsilon_0 V_{TFL}}{ed^2}$, where ε_r is the dielectric constant of MAPbI₃, ε_0 is the vacuum permittivity (8.85 × 10⁻¹⁴ Fcm⁻¹), e is the charge constant (1.69 × 10⁻¹⁹ C), and d is the thickness of the MAPbI₃ layer, respectively

	N _{Trap Density} (cm ⁻³)	$\alpha (cm^2 V^{-1} s^{-1})$
ETL		
	Electr	ron
PC ₆₁ BM	5.41×10^{15}	7.75×10^{-2}
PC ₆₁ BM:PMMA	3.54×10^{15}	7.86×10^{-2}

Fig S7. (a) Steady-state PL spectra and (b) TRPL decays of films of quartz/MAPbI₃ and quartz/PTAA/PFN-Br/MAPbI₃. The PL intensity of the perovskite was quenched by 99.5% in the quartz/PTAA/PFN-Br/MAPbI₃ film. In the TRPL, an excitation and detection wavelength of 470 nm and 770 nm was used. IRF represents instrument response function of the TCSPC system. The PL and TRPL data were obtained by photoexciting the quartz side of the films for observing the hole transfer process at the perovskite and HTL interface. Based on fitting the data with the use of bi-exponential functions, we obtained decay-time constants of 0.3 ns (99 %) and 1.3 ns (1 %) in the quartz/PTAA/PFN-Br/MAPbI₃ film

Fig S8. - Mean IV profiles extracted from several points of AFM topographic images in Fig. S2 (c) to (e)

Fig S9. - Stability measurement for I-PeSCs plotted as a function of storage time under ambient air at 25 °C with a relative humidity of 20~45% for the active area of 1 cm^2