Supporting Information

An air-stable, reusable Ni@Ni(OH)₂ nanocatalyst for the hydrogenation of CO₂/bicarbonates to formate

Xin-Pu Fu^{a,‡} Laurent Peres^{b,c,‡} Catherine Amiens^{b,c}, Jérôme Esvan^d, Karine Philippot^{*,b,c}, Ning Yan^{*,a}

^a Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

^b CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, F-31077 Toulouse Cedex 4, France.

^b Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France.

^d CIRIMAT, CNRS-INP-UPS, INP-ENSIACET, 4 allée Emile Monso, BP 44362, F-31030, Toulouse Cedex 4, France

[‡]These authors contributed equally to this work.

Content

Fig. S1. Raman spectrum of as-prepared Ni@Ni(OH)₂ foam.

Fig. S2. TGA of as-prepared $Ni@Ni(OH)_2$ foam under oxidative/reductive atmosphere. Red line: temperature variation as a function of time; blue line: mass variation as a function of time.

Fig. S3. Hysteresis cycles recorded at 5 K of: in black: as-prepared Ni@Ni(OH)₂ foam (ZFC process); in magenta: Ni@Ni(OH)₂ foam_{3weeks} (FC process under 5T) and in cyan : Ni@Ni(OH)₂ foam_{21weeks} (FC process under 5T).

Fig. S4. Ni 2p XPS spectra of as-prepared Ni@Ni(OH)₂ foam (cyan, bottom line) and of Ni@Ni(OH)₂ foam after 21 weeks in air (black, top line). The reference peaks of the $2p_{3/2}$ orbitals are for Ni metal (Ni(0)) : 852,6eV; for NiO (Ni(II)) : 853,7eV ; and for Ni(OH)₂ (Ni(I)) : 855,6eV.

Fig. S5. Ni 2p XPS spectrum of Ni@Ni(OH)₂-oxi foam.

Fig. S6. Comparison of the GC spectra recorded for methanol and acetic acid standard references and for a catalytic medium after a reaction time of 3 h (other reaction conditions: catalyst (Ni@Ni(OH)₂ 10 mg) in 1 M aqueous NaOH solution, $T = 100^{\circ}$ C, $P_{CO2/H2} = 20$ bar, CO_2 :H₂ = 1:1). **Fig. S7.** Ni 2p XPS spectrum of Ni@Ni(OH)₂ foam catalyst after NaHCO₃ hydrogenation reaction at 100°C for 5 cycles.

Fig. S8. XRD diffractogram of Ni@Ni(OH)₂ foam catalyst after NaHCO₃ hydrogenation reaction, showing the classical Ni cfc pattern (ICCD:96-901-2978). Crystallite size = 20.9 nm (Scherrer equation).

Fig. S9. TEM micrographs of Ni@Ni(OH)₂ foam catalyst after NaHCO₃ hydrogenation reaction at different magnifications.

Fig. S10. SEM micrographs of Ni@Ni(OH)₂ foam catalyst after NaHCO₃ hydrogenation reaction at different magnifications.

Fig. S11. *In-situ* DRIFTS spectra collected at 100°C from as-prepared Ni@Ni $(OH)_2$ foam under gas flow (switching from N₂ to CO₂ to H₂). IR range for adsorbed (a) CO₂ and (b) HCO₃ species.

Fig. S12. (a) TEM micrograph and (b-d) SEM micrographs of Ni@Ni(OH)₂ foam prepared in 100%EtOH.

Fig. S13: (a) Ni 2p XPS spectra of Ni@Ni(OH)₂ foam prepared in THF/EtOH (90/10%v/v) (black, top line) and Ni@Ni(OH)₂ foam prepared in 100% EtOH (magenta, bottom line). The reference peaks of the $2p_{3/2}$ orbitals are for Ni metal (Ni(0)) : 852.6eV; for NiO (Ni(II)) : 853.7eV ; and for Ni(OH)₂ (Ni(I)) : 855,6eV. (b) O 1s XPS spectrum of Ni@Ni(OH)₂ foam prepared in 100% EtOH and (c) XRD diffractogram of Ni@Ni(OH)₂ foam prepared in 100% EtOH, showing the classical Ni cfc pattern (ICCD:96-901-2978). Crystallite size = 6 nm (Scherrer equation).

Fig. S1. Raman spectrum of as-prepared Ni@Ni(OH)₂ foam.

Fig. S2. TGA of as-prepared Ni@Ni(OH)₂ foam under oxidative/reductive atmosphere. Red line: temperature variation as a function of time; blue line: mass variation as a function of time.

The TGA sequence under oxidative/reductive conditions was performed in order to determine the nickel content in the as-prepared Ni@Ni(OH)₂ foam. First, the sample was heated under air to 700 °C (from 0 to 70min). This treatment led to organics removal while nickel was oxidized into NiO. After cooling down to 25°C, (from 70min to 140min) the sample was put under an H₂/Ar (2% H₂) atmosphere and then heated again to 700°C (from 170min to 260min). The final mass measured corresponds thus to the reduced Ni content in the Ni@Ni(OH)₂ foam (95%).

Fig. S3. Hysteresis cycles recorded at 5 K of: in black: as-prepared Ni@Ni(OH)₂ foam (ZFC process); in magenta: Ni@Ni(OH)₂ foam_{3weeks} (FC process under 5T) and in cyan : Ni@Ni(OH)₂ foam_{21weeks} (FC process under 5T).

Nickel is known for its resistance to oxidation when a passivation layer covers the metallic surface. The as-prepared Ni@Ni(OH)₂ foam displays a layer of nickel hydroxide covering the nickel cores which

could provide protection against complete oxidation. To evaluate this protection, the as-prepared and argon-stored Ni@Ni(OH)₂ foam was exposed to ambient air for 1, 3, 6 and 21 weeks. The sample after 1 week of air exposure is named Ni foam_{1week}, that after 3 weeks of air exposure Ni@Ni(OH)₂ foam _{3weeks}, that after 6 weeks Ni foam_{6weeks} and the last one, after 21 weeks of air exposure, Ni@Ni(OH)₂ foam_{21weeks}.

After 3 weeks and then 21 weeks of air exposure, a SQUID analysis was performed (saturation magnetization is given per kg of material). Also, on the 21 weeks sample, a XPS analysis was performed. The magnetic properties of the Ni@Ni(OH)₂ foam_{3weeks} and Ni foam_{21weeks} were very close to those of the as-prepared Ni@Ni(OH)₂ foam (Fig. S3). The saturation magnetization decreased by less than 5% over 21 weeks: from 57.4 A·m²·kg⁻¹ (Ni@Ni(OH)₂ foam, corresponding to 97.4% of Ni(0)) to 55.7 A.m².kg⁻¹ after 3 weeks of air exposure (Ni@Ni(OH)₂ foam_{3weeks}, corresponding to 94.5% of Ni(0)) and to 55.0 A.m².kg⁻¹ after 21 weeks of air exposure (Ni@Ni(OH)₂ foam_{21weeks}, corresponding to 93.4% of Ni(0)). The coercive field was unchanged after 3 weeks (140 mT) and only slightly decreased after 21 weeks (125 mT). The magnetic measurement performed on Ni@Ni(OH)₂ foam_{3weeks} and Ni@Ni(OH)₂ foam_{21weeks} is samples followed a field cooling sequence from 300 K to 5 K under 5T. Contrarily to what is usually observed in crystalline Ni-Ni(OH)₂ structures, the corresponding hysteresis cycles did not show any exchange bias, in agreement with the amorphous character of the Ni(OH)₂ surface layer.

The XPS spectra of the as-prepared Ni foam (Ni@Ni(OH)₂ foam, blue) and the 21 weeks air exposed Ni foam (Ni@Ni(OH)₂ foam_{21weeks}, orange) are presented in the Fig. S4. A clear increase of the Ni(OH)₂ contribution and decrease of the Ni metal one were observed after 21 weeks, indicating that the outside Ni hydroxide layer thickened with time under air. We also observed a small contribution of NiO (peak at 853.7 eV) thus indicating a progressive apparition of the oxide after a very long period of air exposure. Based on the results obtained after air exposure, we can conclude that the Ni foam oxidation process is quite slow, and that its core-shell Ni@Ni(OH)₂ structure is maintained in the oxidation conditions applied.

Fig. S4. Ni 2p XPS spectra of as-prepared Ni@Ni(OH)₂ foam (cyan, bottom line) and of Ni@Ni(OH)₂ foam after 21 weeks in air (black, top line). The reference peaks of the $2p_{3/2}$ orbitals are for Ni metal (Ni(0)) : 852,6eV; for NiO (Ni(II)) : 853.7eV ; and for Ni(OH)₂ (Ni(I)): 855.6eV.

Fig. S5. Ni 2p XPS spectrum of Ni@Ni(OH)₂-oxi foam.

Fig. S6. Comparison of the GC spectra recorded for methanol and acetic acid standard references and for a catalytic medium after a reaction time of 3 h (other reaction conditions: catalyst (Ni@Ni(OH)₂ 10 mg) in 1 M aqueous NaOH solution, $T = 100^{\circ}$ C, $P_{CO2/H2} = 20$ bar, CO_2 :H₂ = 1:1).

Fig. S7. Ni 2p XPS spectrum of Ni@Ni(OH)₂ foam catalyst after NaHCO₃ hydrogenation reaction at 100 °C for 5 cycles.

Fig. S8. XRD diffractogram of Ni@Ni(OH)₂ foam catalyst after NaHCO₃ hydrogenation reaction, showing the classical Ni cfc pattern (ICCD:96-901-2978). Crystallite size = 20.9 nm (Scherrer equation).

Fig. S9. TEM micrographs of Ni@Ni(OH)₂ foam catalyst after NaHCO₃ hydrogenation reaction at different magnifications.

Fig. S10. SEM micrographs of Ni@Ni(OH)₂ foam catalyst after NaHCO₃ hydrogenation reaction at different magnifications.

Fig. S11. *In-situ* DRIFTS spectra collected at 100°C from as-prepared Ni@Ni $(OH)_2$ foam under gas flow (switching from N₂ to CO₂ to H₂). IR range for adsorbed (a) CO₂ and (b) HCO₃ species.

Fig. S12. (a) TEM micrograph and (b-d) SEM micrographs of Ni@Ni(OH)₂ foam prepared in 100%EtOH.

Fig. S13: (a) Ni 2p XPS spectra of Ni@Ni(OH)₂ foam prepared in THF/EtOH (90/10%v/v) (black, top line) and Ni@Ni(OH)₂ foam prepared in 100% EtOH (magenta, bottom line). The reference peaks of the $2p_{3/2}$ orbitals are for Ni metal (Ni(0)) : 852.6eV; for NiO (Ni(II)) : 853.7eV ; and for Ni(OH)₂ (Ni(I)): 855.6eV. (b) O 1s XPS spectrum of Ni@Ni(OH)₂ foam prepared in 100% EtOH and (c) XRD diffractogram of Ni@Ni(OH)₂ foam prepared in 100% EtOH, showing the classical Ni cfc pattern (ICCD:96-901-2978). Crystallite size = 6 nm (Scherrer equation).