Supporting Information

Constructing compatible interface between Li₇La₃Zr₂O₁₂ solid electrolyte and LiCoO₂ cathode for stable cycling performances at 4.5 V

Yuwan Dong,^a Panzhe Su,^a Guanjie He,^b Huiling Zhao^{*a} and Ying Bai^{*a}

^a International Joint Research Laboratory of New Energy Materials and Devices of

Henan Province, School of Physics & Electronics, Henan University, Kaifeng, 475004, P.

R. China

^b Materials Research Centre, UCL Department of Chemistry, Christopher Ingold Building, 20 Gordon Street, London, WC1H 0AJ, UK

* Corresponding author.

E-mail: zhao@henu.edu.cn (H. Zhao); ybai@henu.edu.cn (Y. Bai)

Fig. S1. (a-d) Rietveld refinement XRD spectra for the pristine LCO and LCO@LLZO samples. (e, f) XRD patterns of the LCO@5.0 LLZO and pure phase LLZO samples.

Fig. S2. XPS spectra of Co 2p, O 1s, La 3d and Zr 3d for the pristine and LCO@LLZO samples.

Fig. S3. (a) The long-term cycling performances under 1 C (inset with 0.1 C) and (b) initial discharge curves of the pristine and LCO@1.0 LLZO at high current rate of 1 C (1 C = 274 mA g^{-1}). (c) The rate performances of the pristine LCO and LLZO modified electrodes under different current rates.

Fig. S4. CV curves of LCO and LCO@1.0 LLZO electrodes at a scan rate of 0.05 mV s⁻¹ in the voltage range of 3.0 ~
4.5 V.

Fig. S5. GITT measurements for the Li/LCO cell (a) and LCO@1.0 LLZO cell (b) in the first cycle at high working-voltage of 4.5 V, and the corresponding zoomed curves marked by the arrows.

Fig. S6. FTIR spectra of the pristine and LCO@1.0 LLZO samples before and after cycling in the operating voltage

of 3.0 \sim 4.5 V at room temperature.

Fig. S7. XRD patterns (a) and SEM images (b) of the pristine and the LCO@1.0 LLZO electrodes after 100 cycles in

the working voltage range of 3.0 $^{\sim}$ 4.5 V at the elevated temperature of 55 °C.

Fig. S8. The Co content histogram of the pristine and LCO@1.0 LLZO soaked electrolytes after 1 and 4 weeks.

Fig. S9. (a) DSC profiles of the pristine and LCO@1.0 LLZO samples after 30 cycles (at the high fully charging-state of 4.5 V). (b) Cycle performances of all the as-prepared samples at the current density of 0.1 C and the elevated temperature of 55 °C.

Sample	a (Å)	c (Å)	c/a	I(003)/I(104)
LCO	2.816	14.054	4.99	1.386
LCO@0.5 LLZO	2.816	14.054	4.99	1.758
LCO@1.0 LLZO	2.816	14.055	4.99	1.862
LCO@2.0 LLZO	2.816	14.054	4.99	1.895

 Table S1. Refinement parameters for the XRD spectra of all as-prepared samples.

Material	Current density	Capacity retention	Ref.
LCO@ZrO _x F _y	1 C	200 cycles-56.4 %	1
LCO@MgF	0.2 C	50 cycles- over 80 %	2
LCO@Al ₂ O ₃	1 C	1000 cycles- 72.5 %	3
LCO@ZrO2	0.5 C	30 cycles- 85 %	4
LCO@LATP	1 C	700 cycles- over 60 %	5
LCO@LaF3	0.1 C	50 cycles- 90.9 %	6
LCO@Al ₂ O ₃	0.1 C	50 cycles- 91.8 %	7
LCO@MgAl ₂ O ₄	0.5 C	70 cycles- 96.8 %	8
LCO@Al ₂ O ₃	1/9 C	50 cycles- 88.4 %	9
Al ₂ O ₃ ALD on LCO	0.2 C	50 cycles- 79.8 %	10
This work	1 C	1000 cycles- 76.8 %	

Table S2. Comparison of the capacity retentions of surface-modified LCO electrodes at the high cutoff voltage of4.5 V.

Resistance	electrode	1st	10th	30th
R _{sf} (Ω)	LCO	174.9	280.2	469.6
	LCO@1.0 LLZO	197.8	284.5	481.8
R _{ct} (Ω)	LCO	261.1	634.1	2135.0
	LCO@1.0 LLZO	182.9	325.5	549.3

 Table S3. EIS fitting values of the pristine and LCO@1.0 LLZO electrodes.

Peak position (cm ⁻¹)	Assignment	
870, 1416	CO ₃ ²⁻ bend, Li ₂ CO ₃ ¹¹	
1047, 1115	C-O st, ROCO ₂ Li ¹²	
1191	R-F ¹³	
1399, 1457	C-O st, Li ₂ CO ₃ ¹²	
1628, 1630	C=O asym st, RCOOLi ¹²	
2070	CH ₂ bend, ROCO ₂ Li/(CH ₂ OCO ₂ Li) ₂ ¹⁴	
2854, 2925	C-H, ROCO ₂ Li ^{15,16}	

 Table S4. New peaks appeared and their corresponding identifications in the FTIR spectra of the pristine and

 LCO@1.0 LLZO electrodes after 20 cycles.

with unreferre sources e time.			
Sample	Week 1	Week 4	
LCO	294.79 μ g L ⁻¹	535.72 μg L ⁻¹	
LCO@1.0 LLZO at 4.5 V	220.26 μg L ⁻¹	371.33 μg L ⁻¹	

 Table S5. The Co element concentrations of the pristine and LCO@1.0 LLZO samples immersed in the electrolytes

 with different soakage time.

Supplementary References

- 1. Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, J. Wang, Mater. Lett., 2014, 123, 93–96.
- 2. Y. Bai, K, Jiang, S. Sun, Q. Wu, X. Lu, N. Wan, Electrochim. Acta, 2014, 134, 347-354.
- 3. A. Zhou, Q. Liu, Y. Wang, W. Wang, X. Yao, W. Hu, L. Zhang, X. Yu, J. Li, H. Li, *J. Mater. Chem. A*, 2017, **5**, 24361-24370.
- 4. B. J. Hwanga, C. Y. Chena, M. Y. Chenga, R. Santhanama, K. Ragavendrana, *J. Power Sources*, 2010, **195**, 4255–4265.
- 5. J. H. Shim, J. M. Han, J. H. Lee, S. Lee, ACS Appl. Mater. Interfaces, 2016, 8, 12205–12210.
- 6. Z. Yanga, Q. Qiaoa, W. Yang, Electrochim. Acta, 2011, 56, 4791–4796.
- 7. W. Zhang, Z. Chi, W. Mao, R. Lv, A. Cao, and L. Wan, Angew. Chem. Int. Ed., 2014, 53, 12776-12780.
- 8. D. D. Liang, H. F. Xiang, X. Liang, S. Cheng and C. H. Chen, RSC Adv., 2017, 7, 6809.
- 9. B. Han, T. Paulauskas, B. Key, C. Peebles, J. S. Park, R. F. Klie, T. Vaughey, and F. Dogan, ACS Appl. Mater. Interfaces, 2017, 9, 14769–14778.
- H. M. Cheng, F. M. Wang, J. P. Chu, R. Santhanam, J. Rick, and S. C. Lo, *J. Phys. Chem. C*, 2012, 116, 7629–7637.
- 11. A. A. Shaltout, M. A. Allam and M. A. Moharram, Spectrochim. Acta A, 2011, 83, 56-60.
- 12. K. I. Morigaki and A. Ohta, J. Power Sources, 1998, 76, 159-166.
- 13. D. Ostrovskii, F. Ronci, B. Scrosati and P. Jacobsson, J. Power Sources, 2001, 103, 10-17.
- 14. M. M. Mady and M. A. Allam, Phys. Medica, 2012, 28, 48-53.
- 15. E. Markevich, G. Salitra, F. Chesneau, M. Schmidt and D. Aurbach, *ACS Energy Lett.*, 2017, **2**, 1321-1326.
- 16. M. Si, D. Wang, R. Zhao, D. Pan, C. Zhang, C. Yu, X. Lu, H. Zhao and Y. Bai, *Adv. Sci.*, 2019, **7**, 1902538.