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EC: DEC (1:1 Vol%) containing 2 wt.% FEC, the cycling performances at 100 

mA g-1 (b) 0.8 M KPF6 in EC: DEC (1:1 Vol%) was used as electrolyte for PIBs.
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for SIBs, (b) The relationship between Z' and ω−1/2 for CoSe2/C and Co3O4 in the low-
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Fig. S20 (a) XRD pattern, (b) FESEM image of Na3V2(PO4)3@rGO.



Fig. S21 (a) The working principle of SIBs full-cell with a CoSe2/C anode and a 
Na3V2(PO4)3@rGO cathode, (b) charge-discharge curves of the 1st cycle at 1A g-1, (c) 
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Fig. S22 Charge-discharge curves of CoSe2/C at 50 mA g-1 in PIBs.



Fig. S23 When the mass load of CoSe2/C was 6.3 mg cm-2 as anode for potassium ion 

battery, charge-discharge curves at 50 mA g-1.
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Fig. S27 The charge-discharge curves of CoSe2/C//PTCDA-450 of the first cycle at 
100 mA g-1 in PIBs full-cell.



Table S1. Comparison of electrochemical performance of CoSe2/C with previous 
reported anode materials for PIBs.

Sample Current 
density

(mA g-1)

Cycle
number

Reversible 
capacity

(mAh g-1)

Ref.

MoS2/N-C 50 50 330 1

Sn/C 50 100 276.4 2

N, O-doped C 50 100 230.6 3

SnP0.94@GO 200 100 106 4

Sb2O3-rGO 50 50 110 5

MoSe2/N-C 100 300 258.02 6

CNT 100 500 232 7

FeP@C 100 300 205 8

FeSe2@C 100 100 182 9

Bi@3DGF 200 50 173 10

TiSe2 400 300 ~50 11

Sb@rGO 500 200 210 12

Zn/C-600 100 100 200 13

FeS2@rGO 500 420 123 14

CoSe2/C 50 200 369.2 This work 

100 200 316.4 This work

200 200 261.3 This work

500 200 248.1 This work

CoSe2/C//PTCDA-450
( PIBs full-cell )

100 70 235.5 This work



Table S2. Comparison of electrochemical performance of CoSe2/C with previous 
reported anode materials for SIBs.

Sample Current 

density

(A g-1)

Cycle

number

Reversible 

capacity

(mAh g-1)

Current 

density

(A g-1)

Rate 

capacity

(mAh g-1)

Ref.

CoSe2@NC 0.2 200 374 6.4 ~200 15

CNT/CoSe2/C ~ ~ ~ 2.4 223.6 16

CoSe2@NC 2 1800 384.3 5 276.4 17

CoSe2 1 1690 220 5 150 18

Cu-doped 

CoSe2

1 500 ~350 3 185 19

Ni3S2/Co9S8 0.1 100 419.9 2 323.2 20

NiS2 0.5 100 186.9 0.5 209.8 21

Fe1-xS 1 800 241.1 3.2 179.0 22

WSe2/C 0.1 90 257.8 2 114.4 23

CuS 0.1 100 361.7 5 246.40.1 24

MoSe2 1 200 360 5 281 25

CoSe2/C 4 1600 312.1 3 322.0

8 500 297.6 5 292.8

This 

work

8 266.5

CoSe2/C// 

Na3V2(PO4)3@

rGO

1 50 320.9 0.5 451.7

(SIBs full-cell) 1.0 420.2

2.0 389.4

This 

work

3.0 360.0
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