Gate-controlled Ambipolar Transport in b-AsP Crystal and Its VIS-NIF Photodetection

Mianzeng Zhong,^a Haotong Meng,^a Zhihui Ren,^b Le Huang,^c Juehan Yang,^b Bo Li,^d Qinglin Xia,^a Xiaoting Wang,^b Zhongming Wei,^t Jun He,* a

^aHunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China. E-mail: junhe@csu.edu.cn ^bState Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, China. E-mail: xiaoting13@semi.ac.cn ^cSchool of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China ^dDepartment of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, Hunan, China

Figure S1. The representative EDX spectrum of the $b-As_{0.084}P_{0.916}$ crystal. The Cu and C signals come from the copper grid.

Figure S2. HAADF STEM-EDX mappings of a typical b- $As_{0.084}P_{0.916}$ nanoflake reveal uniform elemental distributions.

Figure S4. Photocurrent rise and decay time of this device measured at a bias voltage of 1 V and under illumination of 638 nm laser with a light intensity of 73 mW/cm².

Figure S5. (a) The light power intensity dependence of the photocurrent measured with a bias voltage of 1 V under the illumination of 450nm laser; (c) Light intensity dependent responsivity and detectivity at the illumination of 450 nm laser under a bias of 1 V; (d) The photoswitching behaviour, (e) photocurrent rise and decay time of this device under illumination of 450 nm laser with a light intensity of 53 mW/cm² and a bias voltage of 1 V.

Figure S6. (a) The light power intensity dependence of the photocurrent measured with a bias voltage of 1 V under the illumination of 532nm laser; (c) Light intensity dependent responsivity and detectivity at the illumination of 532 nm laser under a bias of 1 V; (d) The photoswitching behaviour, (e) photocurrent rise and decay time of this device under illumination of 532 nm laser with a light intensity of 88 mW/cm² and a bias voltage of 1 V.

Figure S7. (a) The light power intensity dependence of the photocurrent measured with a bias voltage of 1 V under the illumination of 808nm laser; (c) Light intensity dependent responsivity and detectivity at the illumination of 808 nm laser under a bias of 1 V; (d) The photoswitching behaviour, (e) photocurrent rise and decay time of this device under illumination of 808 nm laser with a light intensity of 328 mW/cm² and a bias voltage of 1 V.

Figure S8. (a) The light power intensity dependence of the photocurrent measured with a bias voltage of 1 V under the illumination of 1064 nm laser; (c) Light intensity dependent responsivity and detectivity at the illumination of 1064 nm laser under a bias of 1 V; (d) The photoswitching behaviour, (e) photocurrent rise and decay time of this device under illumination of 1064 nm laser with a light intensity of 368 mW/cm² and a bias voltage of 1 V.

Figure S9 (a) The photoswitching behaviour of a typical device under illumination of 1550 nm with the light intensity of 72.2 mW/cm² .