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Figure S1. The representative EDX spectrum of the b-As0.084P0.916 crystal. The Cu and C signals come 
from the copper grid.

Figure S2. HAADF STEM-EDX mappings of a typical b-As0.084P0.916 nanoflake reveal uniform 
elemental distributions.
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Figure S3. AFM image of a typical b-As0.084P0.916 based FET, the thickness is 4.86 nm.

Figure S4. Photocurrent rise and decay time of this device measured at a bias voltage of 1 V and under 
illumination of 638 nm laser with a light intensity of 73 mW/cm2. 



Figure S5. (a) The light power intensity dependence of the photocurrent measured with a bias voltage 
of 1 V under the illumination of 450nm laser; (c) Light intensity dependent responsivity and detectivity 
at the illumination of 450 nm laser under a bias of 1 V; (d) The photoswitching behaviour, (e) 
photocurrent rise and decay time of this device under illumination of 450 nm laser with a light intensity 
of 53 mW/cm2 and a bias voltage of 1 V. 



Figure S6. (a) The light power intensity dependence of the photocurrent measured with a bias voltage 
of 1 V under the illumination of 532nm laser; (c) Light intensity dependent responsivity and detectivity 
at the illumination of 532 nm laser under a bias of 1 V; (d) The photoswitching behaviour, (e) 
photocurrent rise and decay time of this device under illumination of 532 nm laser with a light intensity 
of 88 mW/cm2 and a bias voltage of 1 V. 

Figure S7. (a) The light power intensity dependence of the photocurrent measured with a bias voltage 
of 1 V under the illumination of 808nm laser; (c) Light intensity dependent responsivity and detectivity 
at the illumination of 808 nm laser under a bias of 1 V; (d) The photoswitching behaviour, (e) 
photocurrent rise and decay time of this device under illumination of 808 nm laser with a light intensity 
of 328 mW/cm2 and a bias voltage of 1 V. 



Figure S8. (a) The light power intensity dependence of the photocurrent measured with a bias voltage 
of 1 V under the illumination of 1064 nm laser; (c) Light intensity dependent responsivity and 
detectivity at the illumination of 1064 nm laser under a bias of 1 V; (d) The photoswitching behaviour, 
(e) photocurrent rise and decay time of this device under illumination of 1064 nm laser with a light 
intensity of 368 mW/cm2 and a bias voltage of 1 V. 

Figure S9 (a) The photoswitching behaviour of a typical device under illumination of 1550 nm with the 
light intensity of 72.2 mW/cm2. 


