3D hierarchical porous carbon matching ionic liquid with ultrahigh specific surface area and appropriate porous distribution for supercapacitors

Quanzhou Du, Yuhua Zhao, Kelei Zhuo,* Yujuan Chen, Lifang Yang, Chunfeng Wang, and Jianji Wang*

1. Electrochemical Measurements

The complex form of capacitance $C(\omega)$ is dependent on the real part of the capacitance $C'(\omega)$ and the imaginary part of the capacitance $C''(\omega)$, which is defined as follows

$$C(\omega) = C'(\omega) - jC''(\omega) \tag{1}$$

$$C'(\omega) = \frac{-Z''(\omega)}{\omega |Z(\omega)|^2}$$
(2)

$$C''(\omega) = \frac{Z'(\omega)}{\omega |Z(\omega)|^2}$$
(3)

where $Z'(\omega)$ is the real component and $Z''(\omega)$ is the imaginary component of the complex impedance, respectively. The angular frequency ω is determined by $\omega = 2\pi f$. τ_0 is the relaxation time constant which is calculated by $\tau_0 = 1/f_0$

Fig. S1. Galvanostatic charge-discharge (GCD) curves for different dosage of gelatin at 1 A g^{-1} .

Fig. S2. Morphology characterization of HPC: a) SEM image of HPC-0; b) SEM image of HPC-1.0; c) SEM image of HPC-2.0; d) SEM image of HPC-3.0; e) SEM image of HPC-4.0.

Sample	С%	N%	0%
HPC-0	76.44	3.93	19.63
HPC-0.5	83.79	5.46	10.75
HPC-1.0	88.31	2.79	8.90
HPC-1.5	88.54	2.60	8.86
HPC-2.0	86.15	2.55	11.30
HPC-2.5	86.99	2.63	10.38
HPC-3.0	85.48	3.30	11.22
HPC-3.5	83.46	3.15	13.39
HPC-4.0	84.40	3.11	12.49

Table S1 The contents of C element, N element and O element from XPS survey spectra.

Fig. S3 XPS survey spectra: a) C 1s, N 1s, O 1s spectra of HPC-0; b) C 1s, N 1s, O 1s spectra of HPC-3.5.

Fig. S4 IR spectroscopy: a) IR spectra of all HPCs; b) IR spectra of HPC-3.5.

Fig. S5 Magnification of $N_{\rm 2}$ adsorption–desorption isotherms.

Fig. S6 a) Cyclic voltammetry (CV) curve of all HPC materials at scan rates of 50 mv s⁻¹. b) The normalized imaginary part capacitances of all HPC materials.

The same conclusions can be obtained from Fig. S7b as from Fig. 5c: HPC-3.5 has a larger τ_0 than HPC-3.0 and HPC-4.0 dominated by mesopores, due to a good matching of the micropores size with EMIMBF₄ electrolyte.

Material	IL	Voltage window	Specific capacitance	Reference
mesoporous carbon nanosheets	EMIMBF ₄	3.5 V	130 F g ⁻¹ at 1 A g ⁻¹	2
mesoporous activated carbon fibers	EMIMBF4	4 V	204 F g ⁻¹ at 0.5 A g ⁻¹	3
porous carbon nanosheets	EMIMBF ₄	3 V	173 F g ⁻¹ at 0.25 A g ⁻¹	4
ordered mesoporous and microporous carbons	EMIMBF4	3.5 V	138 F g ⁻¹ at 0.1 A g ⁻¹	5
3D cross coupled macro-mesoporous carbon	EMIMBF4	4 V	166 F g ⁻¹ at 0.5 A g ⁻¹	6
salt-templated carbon materials	EMIMBF ₄	3.5 V	178 F g ⁻¹ at 0.2 A g ⁻¹	7
porosity adjustable graphene monoliths	EMIMBF4	4 V	172 F g-1 at 0.2 A g ⁻¹	8
N, S dual-doped ordered mesoporous carbon/MnO ₂	EMIMBF4	3.5 V	200 F g ⁻¹ at 2 mV s ⁻¹	9
enteromorpha derived carbons	EMIMBF ₄	3 V	201 F g-1 at 1 A g-1	10
hierarchical porous honeycomb-like carbon	EMIMBF4	3.5	174 F g ⁻¹ at 1 A g ⁻¹	11
highly porous carbon	EMIMBF ₄	4 V	224 A g ⁻¹ at 0.1 A g ⁻¹	12
НРС	EMIMBF ₄	3.8 V	216.5 A g ⁻¹ at 1 A g ⁻¹	This work

Table S2 Summary of the supercapacitive performance of representative porous carbon electrodes

 in ionic liquid electrolytes.

Material	Energy density	Power density	References
mesoporous carbon nanosheets	55.3 Wh kg ⁻¹ 46 Wh kg ⁻¹	0.87 kW kg ⁻¹ 236 kW kg ⁻¹	2
mesoporous activated carbon fibers	113 Wh kg ⁻¹ 9.2 Wh kg ⁻¹	1 kW kg ⁻¹ 83 kW kg ⁻¹	3
porous carbon nanosheets	54.1 Wh kg ⁻¹ 25.4 Wh kg ⁻¹	0.375 kW kg ⁻¹ 15 kW kg ⁻¹	4
ordered mesoporous and microporous carbons	59 Wh kg ⁻¹ 25 Wh kg ⁻¹	0.1 kW kg ⁻¹ 18 kW kg ⁻¹	5
3D cross coupled macro-mesoporous carbon	92 Wh kg ⁻¹ 39 Wh kg ⁻¹	1 kW kg ⁻¹ 200 kW kg ⁻¹	6
salt-templated carbon materials	76 Wh kg ⁻¹ 39 Wh kg ⁻¹	0.2 kW kg ⁻¹ 9 kW kg ⁻¹	7
enteromorpha derived carbons	62 Wh kg ⁻¹ 24 Wh kg ⁻¹	0.75 kW kg ⁻¹ 60 kW kg ⁻¹	10
hierarchical porous honeycomb-like carbon	79 Wh kg ⁻¹ 64 Wh kg ⁻¹	0.87 kW kg ⁻¹ 19.5 kW kg ⁻¹	11
nanofibrous chitin microspheres	58.7 Wh kg ⁻¹ 38 Wh kg ⁻¹	0.3 kW kg ⁻¹ 7.1 kW kg ⁻¹	13
N, O co-doped honeycomb porous carbon	94.1 Wh kg ⁻¹ 42.5 Wh kg ⁻¹	0.35 kW kg ⁻¹ 17.5 kW kg ⁻¹	14
3D hierarchical porous carbon materials	46.8 Wh kg ⁻¹ 22.9 Wh kg ⁻¹	6.2 kW kg ⁻¹ 25.4 kW kg ⁻¹	15
НРС	108.6 Wh kg ⁻¹ 42.8 Wh kg ⁻¹	0.96 kW kg ⁻¹ 76.4 kW kg ⁻¹	This work

Table S3 Summary of energy density and power density of symmetric supercapacitors in ionic liquid electrolytes.

References

1. Taberna, P. L.; Simon, P.; Fauvarque, J. F., Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. Journal of The Electrochemical Society 2003, 150 (3), A292.

2. Wang, J.; Xu, Y.; Ding, B.; Chang, Z.; Zhang, X.; Yamauchi, Y.; Wu, K. C., Confined Self-Assembly in Two-Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with In-Plane Orderly Arranged Mesopores and a Highly Graphitized Framework. *Angew Chem Int Ed Engl* **2018**, *57* (11), 2894-2898.

3. Hurilechaoketu; Wang, J.; Cui, C.; Qian, W., Highly electroconductive mesoporous activated carbon fibers and their performance in the ionic liquid-based electrical double-layer capacitors. *Carbon* **2019**, *154*, 1-6.

4. Chen, C.; Yu, D.; Zhao, G.; Du, B.; Tang, W.; Sun, L.; Sun, Y.; Besenbacher, F.; Yu, M., Threedimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for highperformance supercapacitors. *Nano Energy* **2016**, *27*, 377-389.

5. Yan, R.; Heil, T.; Presser, V.; Walczak, R.; Antonietti, M.; Oschatz, M., Ordered Mesoporous Carbons with High Micropore Content and Tunable Structure Prepared by Combined Hard and Salt Templating as Electrode Materials in Electric Double-Layer Capacitors. *Advanced Sustainable Systems* **2018**, *2* (2).

6. Li, J.; Wang, N.; Tian, J.; Qian, W.; Chu, W., Cross-Coupled Macro-Mesoporous Carbon Network toward Record High Energy-Power Density Supercapacitor at 4 V. *Advanced Functional Materials* **2018**, *28* (51), 1806153.

7. Yan, R.; Antonietti, M.; Oschatz, M., Toward the Experimental Understanding of the Energy Storage Mechanism and Ion Dynamics in Ionic Liquid Based Supercapacitors. *Advanced Energy Materials* **2018**, *8* (18).

8. Li, H.; Tao, Y.; Zheng, X.; Luo, J.; Kang, F.; Cheng, H.-M.; Yang, Q.-H., Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. *Energy & Environmental Science* **2016**, *9* (10), 3135-3142.

9. Lai, F.; Feng, J.; Yan, R.; Wang, G.-C.; Antonietti, M.; Oschatz, M., Breaking the Limits of Ionic Liquid-Based Supercapacitors: Mesoporous Carbon Electrodes Functionalized with Manganese Oxide Nanosplotches for Dense, Stable, and Wide-Temperature Energy Storage. *Advanced Functional Materials* **2018**, *28* (36).

10. Yu, W.; Wang, H.; Liu, S.; Mao, N.; Liu, X.; Shi, J.; Liu, W.; Chen, S.; Wang, X., N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. *Journal of Materials Chemistry A* **2016**, *4* (16), 5973-5983.

11. Deng, X.; Li, J.; Zhu, S.; Ma, L.; Zhao, N., Boosting the capacitive storage performance of MOFderived carbon frameworks via structural modulation for supercapacitors. *Energy Storage Materials* **2019**, *23*, 491-498.

12. Wang, X.; Li, Y.; Lou, F.; Melandsø Buan, M. E.; Sheridan, E.; Chen, D., Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. *RSC Advances* **2017**, *7* (38), 23859-23865.

13. Duan, B.; Gao, X.; Yao, X.; Fang, Y.; Huang, L.; Zhou, J.; Zhang, L., Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. *Nano Energy* **2016**, *27*, 482-491.

14. Song, Z.; Li, L.; Zhu, D.; Miao, L.; Duan, H.; Wang, Z.; Xiong, W.; Lv, Y.; Liu, M.; Gan, L., Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. *Journal of Materials Chemistry A* **2019**, *7* (2), 816-826.

15. Guo, N.; Li, M.; Sun, X.; Wang, F.; Yang, R., Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. *Green Chemistry* **2017**, *19* (11), 2595-2602.