## **Supplementary information**

# Multifunctional nanoscale lanthanide metal-organic framework based ratiometric fluorescence paper microchip for visual dopamine assay

Long Yu<sup>1</sup>, Lixiang Feng<sup>1</sup>, Li Xiong, Shuo Li, Qi Xu, Xiangyu Pan and Yuxiu Xiao<sup>\*</sup> Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China

<sup>1</sup>These authors contributed equally to this work

\*Corresponding author at: Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.

Tel.: +86 27 68759892; fax: +86 27 68759850.

E-mail address: yuxiuxiao2011@whu.edu.cn, 99783508@qq.com (Yuxiu Xiao).

### **Contents:**

Partial experimental section Fig. S1---Fig. S24 Table S1---Table S6

### **Partial experimental section**

#### **Reagents and chemicals**

Europium (III) nitrate hexahydrate (Eu(NO<sub>3</sub>)<sub>3</sub>.6H<sub>2</sub>O) was purchased from Saan Chemical Technology Co., Ltd. (Shanghai, China). Dopamine (DA) and N, Ndimethylformamide (DMF) were obtained from Aladdin Bio-Chem Technology Co., LTd. (Shanghai, China). Resorcinol was supplied from Adamas Reagent Co., Ltd. (Shanghai, China). 1,3,5-Benzenetricarboxylic acid (H<sub>3</sub>BTC) was purchased from Macklin Biochemical Co., Ltd. (Shanghai, China). L-Glycine and tris(hydroxymethyl)methyl aminomethane THAM (Tris) were obtained from Lingfei Technology Co., Ltd. (Jiangsu, China). Copper (II) chloride dihydrate (CuCl<sub>2</sub>·2H<sub>2</sub>O) was supplied from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). DA solution and resorcinol solution were prepared using water as solvent.

#### Instrumentation and characterization

The fluorescence excitation and emission spectrum were measured by the FL-4600 fluorescence spectrophotometer (Hitachi, Japan). UV-2600 UV-vis spectrophotometer (Shimadzu Co., Ltd., Japan) was devoted to survey the absorption spectrum. In addition, series of the apparatus were applied for characterization of materials. The Zeiss Ultra Plus thermal field emission scanning electron microscope (SEM) (Carl Zeiss AG, Germany) was used to observe the morphology of the MOF. The Fourier transform infrared spectroscopy (FT-IR) of MOF powder was characterized by Thermo-Nicolet NEXUS 470 infrared spectrometer (Thermo Fisher Scientific, USA). The powder X- ray diffraction pattern (PXRD) that related to crystal structure was performed on Bruker D8 Advance diffractometer with Cu Ka radiation (Bruker AXS, Germany). In order to realize the qualitative analysis and quantitative analysis of copper element, the measurement was carried on the Thermo Scientific K-Alpha X-ray photoelectron spectrometer (Thermo Fisher Scientific, USA) and ContrAA700 Atomic Absorption spectrometer (Germany), respectively. As for the azamonardine product, the <sup>1</sup>H and <sup>13</sup>C spectra were recorded on AVANCE III NMR spectrometer (400 MHZ, Bruker AXS, Switzerland) and the deuterated reagent is d<sub>6</sub>-DMSO. The ultrahigh resolution mass spectrometer (Thermo Fisher Technology Co., Ltd., Q EXACTIVE, China) was used to get the precise molecular weight. Other conventional instrument, SevenEasy S20 desktop pH meter (Mettler-Toledo Instruments Co., Ltd., China); ME-55 Analytical Balance (Mettler-Toledo Instrument Equipment Co., Ltd., China); H1850 High-speed Centrifuge (Xiangyi Instrument Co., Ltd., China); MX-S vortex mixer (Dalong Xingchuang Experimental Instrument Co., Ltd., China); Milli-Q ultrapure water system (Millipore, France).



**Fig. S1** The optimization of the doping concentration of  $Cu^{2+}$ . (a) Control group: 20  $\mu$ M dopamine and 20  $\mu$ M resorcinol, reacting for 20 min in 10 mM tris-glycine buffer (pH 9.0); (b) experimental group: 20  $\mu$ M dopamine and 20  $\mu$ M resorcinol, 100  $\mu$ g mL<sup>-1</sup>Cu@Eu-BTC, reacting in 10 mM trisglycine buffer (pH 9.0) for 20 min. Catalytic effect: I<sub>464 nm (experimental group)</sub>/I<sub>464 nm (control group)</sub>.



Fig. S2 (a)The TEM image of Eu-BTC; (b) the TEM image of Cu@Eu-BTC.



**Fig. S3** The XPS fine spectra of Cu@Eu-BTC (Cu 2p). The results show that not only  $Cu^{2+}$  is observed,  $Cu^+$  is also observed, which is due to the defects in the MOF and the incomplete surface framework structure.<sup>1</sup>



Fig. S4 The excitation and emission spectra of 50  $\mu$ g mL<sup>-1</sup> Eu-BTC dispersion in tris-glycine buffer (pH 9.5, 20 mM).



Fig. S5 The excitation and emission spectra of 50  $\mu$ g mL<sup>-1</sup> Cu@Eu-BTC dispersion in tris-glycine buffer (pH 9.5, 20 mM).



**Fig. S6** (a) the fluorescence spectra without Cu@Eu-BTC for DA assay; (b) the fluorescence spectra with Cu@Eu-BTC for DA assay; (c) the CIE image transformed from (a); (d) the CIE image transformed from (b). Control group: the detection system containing no DA; Experimental group: the detection system containing 20  $\mu$ M DA. Other conditions for the detection system: 20 mM tris-glycine buffer, pH 9.5, resorcinol concentration 150  $\mu$ M, and reaction time 20 min.



Fig. S7 The <sup>1</sup>H-NMR spectrum of reaction product azamonardine.



Fig. S8 The <sup>13</sup>C-NMR spectrum of reaction product azamonardine.



Fig. S9 The high-resolution mass spectrometry result of reaction product azamonardine.



Fig. S10 The excitation and emission spectra of 2  $\mu$ M azamonardine solution in tris-glycine buffer (pH 9.5, 20 mM).



Fig. S11 The fluorescence spectra for verification of AIE effect of Eu-BTC in tris-glycine buffer (pH 9.5, 20 mM).



**Fig. S12** The fluorescence spectra of reaction between RS and DA with  $Cu^{2+}$ , Eu-BTC, Cu@Eu-BTC or without any substance. The concentration of  $Cu^{2+}$  is 2.79  $\mu$ M (which is equivalent to the  $Cu^{2+}$  content in 50  $\mu$ g mL<sup>-1</sup> Cu@Eu-BTC), the concentration of Eu-BTC and Cu@Eu-BTC is 50  $\mu$ g mL<sup>-1</sup>. 20 mM tris-glycine buffer, pH 9.5, resorcinol concentration 150  $\mu$ M, DA 20  $\mu$ M, and reaction time 20 min.



Fig. S13 The valence-band XPS spectrum of Eu-BTC.



Fig. S14 The valence-band XPS spectrum of Cu@Eu-BTC.



**Fig. S15** The  $(\alpha hv)^{1/2}$  versus hv curve of Eu-BTC and Cu@Eu-BTC. The band structure is calculated by the KubelKa-Munk (KM) method according to the equation:  $\alpha hv=A(hv-Eg)^2$ , where  $\alpha$  is the absorption coefficient, h is Planck's constant, v is frequency, Eg is the direct band gap, and A is a constant.



**Fig. S16** The  ${}^{1}O_{2}$  capture experiment. Diphenylbenzofuran (DPBF) is used as a  ${}^{1}O_{2}$  capture agent at a concentration of 200 nM, the concentration of Eu-BTC and Cu@Eu-BTC is 200 µg mL<sup>-1</sup>, reaction time is 1 h, and the excitation wavelength is 380 nm. (The results indicate that Cu@Eu-BTC can produce more  ${}^{1}O_{2}$  compared to Eu-BTC because the fluorescence of DPBF is quenched after DPBF captures  ${}^{1}O_{2}$ .)



**Fig. S17** (a) The kinetic experiment for the evaluation of the catalytic activity of Cu@Eu-BTC (comparison of the difference between the presence and absence of Cu@Eu-BTC); (b) the determination of the catalytic rate constant of Cu@Eu-BTC, F stands for fluorescence intensity, t stands for time. The concentration of Cu@Eu-BTC is 50  $\mu$ g mL<sup>-1</sup>. 20 mM tris-glycine buffer, pH 9.5, resorcinol concentration 150  $\mu$ M, DA 10  $\mu$ M, and reaction time 20 min.



**Fig. S18** Response surface curves about the influence of reaction pH (A), resorcinol concentration (B,  $\mu$ M) and reaction time (C, min) on the ratio fluorescence change for dopamine assay.



Fig. S19 Response surface curves about the influence of reaction pH (A), resorcinol concentration (B,  $\mu$ M) and reaction time (C, min) on the catalytic effect for dopamine assay.



Fig. S20 Response surface curves about the influence of reaction pH (A), resorcinol concentration (B,  $\mu$ M) on the combination of ratio fluorescence change and catalytic effect for dopamine assay.



**Fig. S21** The optimization of Cu@Eu-BTC concentration for DA detection. The fluorescence spectrum of the detection system with Cu@Eu-BTC concentration of 10  $\mu$ g mL<sup>-1</sup> (a), 25  $\mu$ g mL<sup>-1</sup> (b), 50  $\mu$ g mL<sup>-1</sup> (c), 75  $\mu$ g mL<sup>-1</sup> (d), and 100  $\mu$ g mL<sup>-1</sup> (e), respectively; (f) the varying trend of chromaticity shift value with the MOF concentration. Control group: the detection system containing no DA; Experimental group: the detection system containing 20  $\mu$ M DA. Other conditions for the detection system: 20 mM tris-glycine buffer, pH 9.5, resorcinol concentration 150  $\mu$ M, and reaction time 20 min.



**Fig. S22** (a) Volume optimization of Cu@Eu-BTC MOF dispersion added to paper base (MOF dispersion :100  $\mu$ g/mL). (b) The concentration optimization of Cu@Eu-BTC dispersion (pH value: 9.5; tris-glycine buffer: 20 mM; DA concentration: 10  $\mu$ M; reaction time: 10 min; resorcinol concentration: 60 mM; MOF dispersion volume: 40  $\mu$ L). (c) The concentration optimization of resorcinol solution (pH value: 9.5; tris-glycine buffer: 20 mM; DA concentration: 10  $\mu$ M; reaction time: 10  $\mu$ M;



Fig. S23 The reaction time optimization for visual DA assay. (pH value: 9.5; tris-glycine buffer: 20 mM; DA concentration: 10  $\mu$ M; resorcinol concentration: 60 mM; MOF dispersion: 50  $\mu$ g/mL and 40  $\mu$ L)



**Fig. S24** The storage stability of DA paper biosensor in 30 days (n = 3). The stability of MOFloaded paper was investigated by serum samples diluted with 20 mM tris-glycine buffer (pH=9.5) every four/five days within a month (DA: 10  $\mu$ M; reaction time: 15 min; resorcinol concentration: 60 mM).

| Run |     | Factor                |            | Response                  |                  |  |  |
|-----|-----|-----------------------|------------|---------------------------|------------------|--|--|
|     | pН  | RS concentration (µM) | Time (min) | Ratio fluorescence change | Catalytic effect |  |  |
| 1   | 9.5 | 125                   | 20         | 1.8593                    | 3.0191           |  |  |
| 2   | 9   | 50                    | 20         | 0.3336                    | 4.4035           |  |  |
| 3   | 10  | 125                   | 30         | 2.8395                    | 1.4233           |  |  |
| 4   | 9.5 | 50                    | 10         | 0.8929                    | 2.5749           |  |  |
| 5   | 9.5 | 125                   | 20         | 1.6369                    | 2.5862           |  |  |
| 6   | 9.5 | 200                   | 30         | 2.5071                    | 2.7078           |  |  |
| 7   | 9.5 | 125                   | 20         | 1.6816                    | 2.6385           |  |  |
| 8   | 9.5 | 125                   | 20         | 1.8199                    | 2.7462           |  |  |
| 9   | 10  | 125                   | 10         | 1.7183                    | 1.3984           |  |  |
| 10  | 10  | 50                    | 20         | 1.7246                    | 1.1925           |  |  |
| 11  | 9   | 200                   | 20         | 0.7428                    | 4.419            |  |  |
| 12  | 9.5 | 200                   | 10         | 1.4106                    | 4.3241           |  |  |
| 13  | 9.5 | 50                    | 30         | 1.1964                    | 1.7082           |  |  |
| 14  | 10  | 200                   | 20         | 3.0697                    | 1.9574           |  |  |
| 15  | 9   | 125                   | 30         | 0.7463                    | 3.7514           |  |  |
| 16  | 9   | 125                   | 10         | 0.4197                    | 4.8137           |  |  |
| 17  | 9.5 | 125                   | 20         | 1.8020                    | 3.0188           |  |  |

**Table S1** Experimental results for Box-Behnken design: three factors are reaction pH,resorcinol (RS) concentration and reaction time

| Source                                      | Sum of square    | Degree of freedom | Mean square | F-value | <i>p</i> -value |
|---------------------------------------------|------------------|-------------------|-------------|---------|-----------------|
| Model                                       | 9.78             | 9                 | 1.09        | 149.90  | <0.0001**       |
| A-pH                                        | 6.32             | 1                 | 6.32        | 871.23  | <0.0001**       |
| <b>B-RS</b> concentration                   | 1.60             | 1                 | 1.60        | 221.22  | <0.0001**       |
| C-Time                                      | 1.01             | 1                 | 1.01        | 139.78  | <0.0001**       |
| AB                                          | 0.22             | 1                 | 0.22        | 30.20   | 0.0009**        |
| AC                                          | 0.16             | 1                 | 0.16        | 21.76   | 0.0023**        |
| BC                                          | 0.16             | 1                 | 0.16        | 21.68   | 0.0023**        |
| $A^2$                                       | 0.14             | 1                 | 0.14        | 19.13   | 0.0033**        |
| $\mathrm{B}^2$                              | 0.052            | 1                 | 0.052       | 7.12    | 0.0321*         |
| $\mathrm{C}^2$                              | 0.092            | 1                 | 0.092       | 12.62   | 0.0093**        |
| Lack of Fit                                 | 0.014            | 3                 | 7.25E-003   | 0.52    | 0.6904          |
| Residual                                    | 0.051            | 7                 | 4.75E-003   |         |                 |
| Pure Error                                  | 0.036            | 4                 | 9.12E-003   |         |                 |
| Cor Total                                   | 9.83             | 16                |             |         |                 |
| $\mathbb{R}^2$                              | 0.9948           |                   |             |         |                 |
| Adjusted R <sup>2</sup>                     | 0.9882           |                   |             |         |                 |
| Predicted R <sup>2</sup>                    | 0.9710           |                   |             |         |                 |
| Experimental value (n=3)                    | $1.91 \pm 0.071$ |                   |             |         |                 |
| Error in relation to<br>Predicted value (%) | -2.05            |                   |             |         |                 |

 Table S2 ANOVA and validation of response surface model for the optimization of dopamine assay conditions (response index 1: ratiometric fluorescence change)

\* Significant, p < 0.05. \*\* Highly significant, p < 0.01. RS: resorcinol.

The model equation:

Ratiometric fluorescence change =

The adjusted coefficient R<sup>2</sup> is 0.9882, which proves the reliability and accuracy of the model. The predicted R<sup>2</sup> is 0.9710, which is in reasonable agreement with the adjusted coefficient R<sup>2</sup>, indicating that the model can effectively predict the experimental results. The *p*-value of the model is less than 0.0001, which proves that the regression model is significant. In addition, factors A, B and C all have a significant impact on the ratiometric fluorescence change, and there is an interaction between AB, AC, and BC (p < 0.05). In addition, the *p*-value of lack of fit is 0.6904 (p > 0.05), indicating that the fitting result of the model is highly credible.

| Source                    | Sum of square | Degree of freedom | Mean square | F-value | <i>p</i> -value |  |
|---------------------------|---------------|-------------------|-------------|---------|-----------------|--|
| Model                     | 19.40         | 3                 | 6.47        | 53.02   | <0.0001**       |  |
| A-pH                      | 16.29         | 1                 | 16.29       | 133.58  | < 0.0001**      |  |
| <b>B-RS</b> concentration | 1.56          | 1                 | 1.56        | 12.77   | 0.0034**        |  |
| C-Time                    | 1.55          | 1                 | 1.55        | 12.70   | 0.0035**        |  |
| Lack of Fit               | 1.41          | 13                | 0.16        | 3.69    | 0.1108          |  |
| Residual                  | 1.59          | 9                 | 0.12        |         |                 |  |
| Pure Error                | 0.17          | 4                 | 0.043       |         |                 |  |
| Cor Total                 | 20.98         | 16                |             |         |                 |  |
| $\mathbb{R}^2$            | 0.9244        |                   |             |         |                 |  |
| Adjusted R <sup>2</sup>   | 0.9070        |                   |             |         |                 |  |
| Predicted R <sup>2</sup>  | 0.8506        |                   |             |         |                 |  |
| Experimental              | 2 00 10 18    |                   |             |         |                 |  |
| value(n=3)                | 3.00±0.18     |                   |             |         |                 |  |
| Error in relation to      | 269           |                   |             |         |                 |  |
| Predicted value (%)       | 2.08          |                   |             |         |                 |  |

**Table S3** ANOVA and validation of response surface model for the optimization ofdopamine assay conditions (response index 2: catalytic effect of Cu@Eu-BTC)

\* Significant, p < 0.05. \*\* Highly significant, p < 0.01. RS: resorcinol.

The model equation:

Catalytic effect = 2.86-1.43 \* A+0.44 \* B-0.44\* C

The adjusted coefficient  $R^2$  is 0.9070, which proves the reliability and accuracy of the model. The predicted  $R^2$  is 0.8506, which is in reasonable agreement with the adjusted coefficient  $R^2$ , indicating that the model can effectively predict the experimental results. The *p*-value of the model is less than 0.0001, which proves that the regression model is significant. In addition, factors A, B and C all have a significant impact on the catalytic effect of Cu@Eu-BTC. In addition, the *p*-value of lack of fit is 0.1108 (*p* > 0.05), indicating that the fitting result of the model is highly credible.

| Succios             | Resorcinol |       | DA     |                | Epinephrine | Norepinephrine |                |                |
|---------------------|------------|-------|--------|----------------|-------------|----------------|----------------|----------------|
| Species             | D          | А     | $D_1$  | A <sub>1</sub> | $D_2$       | $A_2$          | D <sub>3</sub> | A <sub>3</sub> |
| Charge distribution | -0.712     | 0.063 | -0.529 | 0.159          | 0.018       | 0.334          | -0.358         | -0.258         |

Table S4 Charge distribution analysis of resorcinol, DA, epinephrine and norepinephrine

**Table S5** Ratiometric chromaticity (B/R) in the nine different circular areas (3\*3) of three paper microchips obtained after being Immersed in the aqueous dispersion of Cu@Eu-BTC (100  $\mu$ g mL<sup>-1</sup>) with different volume

| Aroo | 10 µL |       | 20 µL |       | 30 µL |       | 40 µL |       | 50 µL |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Area | B/R   | SD    |
| 1    | 1.925 |       | 0.808 |       | 0.828 |       | 0.741 |       | 0.534 |       |
| 2    | 0.839 |       | 0.892 |       | 0.917 |       | 0.741 |       | 0.586 |       |
| 3    | 0.892 |       | 0.808 |       | 0.808 |       | 0.776 |       | 0.534 |       |
| 4    | 1.000 |       | 0.851 |       | 0.808 |       | 0.776 |       | 0.567 |       |
| 5    | 1.138 | 0.512 | 1.375 | 0.194 | 0.802 | 0.061 | 0.733 | 0.018 | 0.552 | 0.021 |
| 6    | 0.862 |       | 0.862 |       | 0.776 |       | 0.741 |       | 0.586 |       |
| 7    | 1.248 |       | 0.741 |       | 0.857 |       | 0.733 |       | 0.534 |       |
| 8    | 2.305 |       | 0.808 |       | 0.741 |       | 0.765 |       | 0.580 |       |
| 9    | 1.145 |       | 1.048 |       | 0.925 |       | 0.733 |       | 0.567 |       |

SD: standard deviation

| Methods                 | Catalytic fluorescence<br>turn-on reaction | Visual<br>assay | Ratiometric chromaticity | Paper<br>microchip | LOD<br>(µM) | Linear range<br>(µM) | Ratiometric<br>fluorescence | Reference |
|-------------------------|--------------------------------------------|-----------------|--------------------------|--------------------|-------------|----------------------|-----------------------------|-----------|
| UiO-66-NH <sub>2</sub>  | no                                         | no              | no                       | no                 | 0.68        | 1-70                 | yes                         | 2         |
| Eu-DBA                  | no                                         | no              | no                       | no                 | 0.015       | 0.05-30              | yes                         | 3         |
| Carbon quantum dot      | no                                         | no              | no                       | no                 | 0.158       | 0.25-50              | no                          | 4         |
| NaGdF <sub>4</sub> : Tb | no                                         | no              | no                       | no                 | 0.033       | 0-20                 | no                          | 5         |
| Eu-ECP                  | no                                         | no              | no                       | no                 | 0.021       | 0.1-10               | no                          | 6         |
| C-dot                   | no                                         | no              | no                       | no                 | 0.125       | 0-100                | no                          | 7         |
| Carbon nanodot          | no                                         | no              | no                       | no                 | 0.22        | 1-10                 | no                          | 8         |
| Cu@Eu-BTC               | yes                                        | yes             | yes                      | yes                | 0.01        | 0.04-30              | yes                         | this work |

Table S6 Comparison of the proposed method in this work with other fluorescent methods for the assay of DA in human serum

UiO-66-NH<sub>2</sub>, University of Oslo-66-NH<sub>2</sub>; Eu-DBA, Eu-3,5-dicarboxybenzeneboronic acid; Eu-ECP, Eu-2,3-pyrazine dicarboxylic acid; Cu@Eu-BTC, Cu@Eu-Trimesic acid.

## References

- 1 Pengfei Huang, Jiawei Lei, Zhirong Sun, Xiang Hu, *Chemosphere*, 2021, **268**, 129157.
- 2 N. Wang, M. Xie, M. Wang, Z. Li and X. Su, *Talanta*, 2020, **220**, 121352.
- 3 Q. Du, P. Wu, P. Dramou, R. Chen and H. He, *New J. Chem.*, 2019, **43**, 1291–1298.
- 4 S. Dadkhah, A. Mehdinia, A. Jabbari and A. Manbohi, *Microchim. Acta*, 2020, 187(10): 1-12..
- 5 X. Ling, R. Shi, J. Zhang, D. Liu, M. Weng, C. Zhang, M. Lu, X. Xie, L. Huang and W. Huang, *ACS Sensors*, 2018, **3**, 1683–1689.
- F. Moghzi, J. Soleimannejad, E. C. Sañudo and J. Janczak, ACS Appl. Mater. Interfaces, 2020, 12, 44499–44507.
- J. Wang, R. Du, W. Liu, L. Yao, F. Ding, P. Zou, Y. Wang, X. Wang, Q. Zhao and H. Rao, Sensors Actuators, B Chem., 2019, 290, 125–132.
- 8 K. Chaiendoo, S. Ittisanronnachai, V. Promarak and W. Ngeontae, *Carbon N. Y.*, 2019, **146**, 728–735.