## Plasmonic Enhancement of Nitric Oxide Generation

Rachael Knoblauch and Chris D. Geddes\*

Institute of Fluorescence and Department of Chemistry and Biochemistry, University

of Maryland Baltimore County, 701 East Pratt Street, Baltimore, Maryland 21202,

USA

\*all correspondence: geddes@umbc.edu

## **Electronic Supplementary Information**



**Fig. S1.** Nitric oxide (NO•) detection from brominated carbon nanodots (BrCND) under pH cycled conditions. Detection was completed using diaminofluorescein-FM (DAF-FM) probe both "pre" and "post" acid cycling conditions, either under dark or UV-exposed ( $\lambda_{ex} = 365 \text{ nm}$ , 0.56 ± 0.04 mW) conditions. *A)* Fluorescence spectra of NO• detection under dark conditions. *B)* Average intensities from n = 3 trials, with error from standard deviation (\*p < 0.05). Reproduced from Ref. [S1] with permission from The Royal Society of Chemistry.



**Fig. S2.** Photodynamic release of nitric oxide (NO•) from brominated carbon nanodots (BrCND) as detected by *fluorescence-on* probe DAF-FM. Release was detected after 4 minutes of either dark or UV exposure ("Exposed,"  $\lambda_{ex}$  = 365 nm, 580 ± 20<sub>(SD)</sub>  $\mu$ W) in blank 96-well plates, both under dilution (pH ~ 12-12.5) and pH cycled (pH < 3) conditions. *N* = 5, \**P* << 0.001, error from standard deviation.



**Fig. S3.** Schematic of the different detection methods of metal-enhanced nitric oxide (ME-NO•) photodynamic release from brominated carbon nanodots (BrCND), using the *fluorescence-on* probe DAF-FM. Methods include (*A*) single sample, (*B*) high-throughput (HT) spectral detection, and (*C*) HT advanced read, with detection occurring at 513 nm (error from standard deviation of N = 5 sample scans).



**Fig. S4.** Selection of excitation parameters for metal-enhanced detection of nitric oxide (NO•) release. (*A*) Spectral overlay of DAF-FM absorption (detected in blank plate, dashed blue line), excitation (detected in Quanta Plate<sup>TM</sup>,  $\lambda_{em} = 513$  nm, solid blue line) profiles versus Quanta Plate<sup>TM</sup> well synchronous scattering profile ( $\lambda_{ex} = \lambda_{em}$ ). (*B*) Background excitation scattering versus DAF-FM (10 µM) emission in Quanta Plate<sup>TM</sup> wells at  $\lambda_{ex} = top - 475$  and *bottom* – 280 nm. Arrows indicate signal change relative to background excitation scattering. All error from standard deviation from N = 3 measurements.

| Species Detected                                  | Plasmonic<br>Substrate        | Reactive Species<br>Donor                                                                                       | Enhancement<br>Factor                           | [Ref.] |
|---------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| Singlet Oxygen<br>( <sup>1</sup> O <sub>2</sub> ) | Silver Island<br>Films (SiFs) | Acridine<br>Rose Bengal<br>Chloroquine<br>Indomethacin<br>Riboflavin<br>Naproxen<br>Chlorpromazine<br>Quinidine | ~2<br>~3<br>~6<br>~2<br>~4<br>~17<br>~21<br>~26 | [S2]   |
| $^{1}O_{2}$                                       | SiFs                          | C60                                                                                                             | ~ 5 - 35                                        | [S3]   |
| $^{1}O_{2}$                                       | SiFs                          | Rose Bengal                                                                                                     | ~ 2 - 10                                        | [S4]   |
| <sup>1</sup> O <sub>2</sub>                       | Quanta Plates <sup>™</sup>    | Brominated Carbon<br>Nanodots                                                                                   | ~ 2                                             | [85]   |
| Superoxide anion<br>radical (O2 <sup>••</sup> )   | SiFs                          | Acridine                                                                                                        | ~ 4 - 6                                         | [S4]   |

Table S1. Metal-Enhanced Generation or Release of Reactive Species.

Table S2. Parameters and Analysis from Varied Energy Density Experiments (Fig. 3).

| Fig.       | [DAF-FM]<br>(µM) | Time<br>( <i>t</i> , sec)  | Power<br>( <i>P</i> , μW)                                                                 | Surface Area<br>(SA, mm²)                                                            | Linear Fit, Slope<br>(J <sup>-1</sup> •m <sup>2</sup> )     |
|------------|------------------|----------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 3.4        | 7 μΜ             | 0-240 sec<br>int. = 80 sec | $540\pm20_{(\text{SD})}$                                                                  | 100% (40 mm <sup>2</sup> )                                                           | $\begin{array}{l} -0.0001 \pm \\ 0.0001_{(SE)} \end{array}$ |
| 3 <i>B</i> | 7 μΜ             | 80 sec                     | $\begin{array}{l} 580\pm 30_{(SD)} \\ 950\pm 140_{(SD)} \\ 1590\pm 60_{(SD)} \end{array}$ | 100% (40 mm²)                                                                        | $3 \cdot 10^{-6} \pm 30 \cdot 10^{-6}_{(SE)}$               |
| 3C         | 7 μΜ             | 80 sec                     | $570\pm20_{(\text{SD})}$                                                                  | 35% (14 mm <sup>2</sup> )<br>55% (21 mm <sup>2</sup> )<br>100% (40 mm <sup>2</sup> ) | $27 \cdot 10^{-5} \pm 2 \cdot 10^{-5}$ (SE)                 |
| 3 <i>E</i> | 1-100 μΜ         | 80 sec                     | $560\pm20_{(\text{SD})}$                                                                  | 100% (40 mm <sup>2</sup> )                                                           | N/A                                                         |
|            |                  |                            |                                                                                           |                                                                                      |                                                             |

The reader is referred to Fig. 3A-C,E of the main text. "int." = interval

| Method        | Preparation /<br>Exposure | Analysis<br>(Single Trial, <i>N</i> ) | Analysis<br>(All Samples, <i>N</i> ) | Total<br>Time  |
|---------------|---------------------------|---------------------------------------|--------------------------------------|----------------|
| Single sample | ~ 15 min                  | $\sim 3 \min, N = 1$                  | $\sim 1.6$ hr, $N = 32$              | $\sim 2 \ hr$  |
| HT, spectral  | ~ 15 min                  | $12\pm 1^a$ min, $N=16$               | $25 \pm 2^{b}$ min, $N = 32$         | $\sim 40 \min$ |
| HT, adv read  | ~ 15 min                  | $6.3 \pm 0.4^c \min, N = 16$          | $12.6 \pm 0.8^d \min, N = 32$        | ~ 30 min       |

Table S3. Timescales for Detection of Metal-Enhanced Nitric Oxide Release.

<sup>*a*</sup> N = 4 timed trials, error from standard deviation

HT – High throughput, N = 5 averaged scan per spectrum *Adv read* – advanced read, N = 5 averaged scans at 513nm

<sup>b</sup> Error propagated from (a)

 $^{c}$  N = 4 timed trials, error from standard deviation

<sup>*d*</sup> Error propagated from (c)

**ESI References** 

- R. Knoblauch, A. Harvey, C.D. Geddes, Antimicrobial carbon nanodots: photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots. *Nanoscale* 13, 85-99 (2021). doi:10.1039/D0NR06842J
- Y. Zhang, K. Aslan, M.J.R. Previte, C.D. Geddes, Plasmonic engineering of singlet oxygen generation. Proc. Natl. Acad. Sci. U.S.A. 105, 1798-1802 (2008).
- 3. X. Ragàs, A. Gallardo, Y. Zhang, W. Massad, C.D. Geddes, S. Nonell, Singlet oxygen production enhancement by silver island films. *J. Phys. Chem. C.* 115, 16275-16281 (2011).
- 4. J. Karolin, C.D. Geddes, Metal-enhanced fluorescence based excitation volumetric effect of plasmonenhanced singlet oxygen and superoxide generation. *Phys. Chem. Chem. Phys.* 15, 15740-15745 (2013).
- 5. R. Knoblauch, A. Harvey, C.D. Geddes, Metal-enhanced photosensitization of singlet oxygen (ME<sup>1</sup>O<sub>2</sub>) from brominated carbon nanodots on silver nanoparticle substrates. *Nanoscale* in submission (2021).