**Supporting Information for** 

## Structural Transformation between Rutile and Spinel Crystal Lattices in Ru-Co Binary Oxide Nanotubes: Enhanced Electron Transfer Kinetics for Oxygen Evolution Reaction

Areum Yu, Myung Hwa Kim, Chongmok Lee, Youngmi Lee\*

Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea

\*Corresponding author: (Fax) <u>+82-2-3277-2384</u>, (E-mail) <u>youngmilee@ewha.ac.kr</u>.

| Materials                                                      | a (RuO <sub>2</sub> , nm) | c (RuO <sub>2</sub> , nm) | a (Co <sub>3</sub> O <sub>4</sub> , nm) |
|----------------------------------------------------------------|---------------------------|---------------------------|-----------------------------------------|
| RuO <sub>2</sub>                                               | 0.4523                    | 0.3116                    |                                         |
| $Ru_{0.77}Co_{0.23}O_y$                                        | 0.4476                    | 0.3065                    |                                         |
| Ru <sub>0.64</sub> Co <sub>0.36</sub> O <sub>y</sub>           | 0.4475                    | 0.3057                    | 0.8142                                  |
| $\mathrm{Ru}_{0.47}\mathrm{Co}_{0.53}\mathrm{O}_{y}$           | 0.4489                    | 0.3060                    | 0.8123                                  |
| $\mathrm{Ru}_{0.33}\mathrm{Co}_{0.67}\mathrm{O}_{y}$           | 0.4486                    | 0.3058                    | 0.8112                                  |
| $\mathrm{Ru}_{0.19}\mathrm{Co}_{0.81}\mathrm{O}_{\mathcal{Y}}$ | 0.4496                    | 0.3077                    | 0.8108                                  |
| Co <sub>3</sub> O <sub>4</sub>                                 |                           |                           | 0.8103                                  |

**Table S1.** Lattice constants of  $RuO_2$  rutile structure and  $Co_3O_4$  cubic structure according to Bragg's law



**Figure S1.** High-resolution XPS spectra of (A) Ru 3d and (B) Co 2p regions of  $Ru_xCo_{1-x}O_y$  nanomaterials (x = 0.19, 0.33, 0.47 and 0.64).



**Figure S2.** High resolution Co 2p XPS spectra of (A) electrospun Co<sub>3</sub>O<sub>4</sub> nanotubes and (B)  $Ru_{0.47}Co_{0.53}O_y$  nanotubes. The deconvoluted area ratios of Co<sup>2+</sup> to Co<sup>3+</sup> for 2p<sub>1/2</sub> are 2.46 and 3.11 in Co<sub>3</sub>O<sub>4</sub> and  $Ru_{0.47}Co_{0.53}O_y$  nanotubes, respectively.



Figure S3. Electron paramagnetic resonance (EPR) spectra of Ru<sub>0.77</sub>Co<sub>0.53</sub>O<sub>y</sub> and Ru<sub>0.47</sub>Co<sub>0.53</sub>O<sub>y</sub>.



**Figure S4.** (A) Cyclic voltammograms of  $\operatorname{Ru}_{0.47}\operatorname{Co}_{0.53}\operatorname{O}_y$  in 1.0 M KNO<sub>3</sub> solution at various scan rates of 10, 20, 50, 100, 150, and 200 mV s<sup>-1</sup>. (B) Cyclic voltammograms of as prepared RuO<sub>2</sub>, Ru<sub>x</sub>Co<sub>1-x</sub>O<sub>y</sub> (0 < x < 1) and Co<sub>3</sub>O<sub>4</sub> nanomaterials obtained at a scan rate of 50 mV s<sup>-1</sup>. (C) Plots of anodic and cathodic current differences ( $\Delta i_c$ ) measured at 0.05 V as a function of scan rate.



**Figure S5.** *iR*-compensated RDE voltammograms for OER at  $RuO_2$ ,  $Ru_{0.47}Co_{0.53}O_y$ ,  $Co_3O_4$  and physically mixed  $RuO_2+Co_3O_4$  nanomaterials obtained in Ar-saturated 1.0 M HClO<sub>4</sub> with a rotation rate of 1600 rpm at a scan rate of 10 mV s<sup>-1</sup>.



**Figure S6.** Nyquist plots of RuO<sub>2</sub>, Ru<sub>x</sub>Co<sub>1-x</sub>O<sub>y</sub> (x = 0.47 and 0.77) and Co<sub>3</sub>O<sub>4</sub> nanomaterials measured in 1 M HClO<sub>4</sub> solution at potentials achieving 5 mA cm<sup>-2</sup>.

**Table S2.** Charge-transfer resistance ( $R_{ct}$ ) values of RuO<sub>2</sub>, Ru<sub>x</sub>Co<sub>1-x</sub>O<sub>y</sub> (x = 0.47 and 0.77) and Co<sub>3</sub>O<sub>4</sub> nanomaterials measured from the Nyquist plots in Figure S6.

| Materials                      | Resistance (Ω) |
|--------------------------------|----------------|
| RuO <sub>2</sub>               | 90.9           |
| $Ru_{0.77}Co_{0.23}O_y$        | 86.9           |
| $Ru_{0.47}Co_{0.53}O_4$        | 68.2           |
| Co <sub>3</sub> O <sub>4</sub> | 155.7          |



**Figure S7.** Chronopotentiograms of  $Ru_{0.47}Co_{0.53}O_y$  and  $RuO_2$  obtained with a constant applied current of 10 mA cm<sup>-2</sup> in 0.1 M HClO<sub>4</sub> aqueous solution. Electrodes were not mechanically rotated.



**Figure S8.** A SEM image of  $Ru_{0.47}Co_{0.53}O_y$  nanotubes after the continuous OER at 10 mA cm<sup>-2</sup> for 8 000 s.

**Table S3.** Comparison of the atomic ratio in  $Ru_{0.47}Co_{0.53}O_y$  before and after the continuous OER at 10 mA cm<sup>-2</sup> for 8 000 s which were determined with SEM-EDS measurements at more than 20 different locations.

| Materials                                            | Elements | Atomic Ratio (%) |
|------------------------------------------------------|----------|------------------|
| Ru <sub>0.47</sub> Co <sub>0.53</sub> O <sub>y</sub> | Ru       | 46.9 (± 1.6)     |
| before stability test                                | Со       | 53.1 (± 1.6)     |
| $Ru_{0.47}Co_{0.53}O_y$ after stability test         | Ru       | 46.7 (± 2.2)     |
|                                                      | Со       | 53.3 (± 2.2)     |



**Figure S9.** Raman spectra for  $Ru_{0.46}Co_{0.53}O_y$  nanotubes (A) before and (B) after a stability test with a constant applied current of 10 mA cm<sup>-2</sup> for 3600 s.



**Figure S10.** LSV for  $O_2$  reduction in  $O_2$ -saturated and Ar-saturated 1.0 M HClO<sub>4</sub> solution at a Pt tip electrode (25  $\mu$ m in diameter) with a scan rate of 10 mV s<sup>-1</sup>.