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The document contains the algorithms for iterative label spreading (ILS) (Algorithm 1), the

Tukey method (Algorithm 2) and the linear correlation removal procedure (Algorithm 3). This

is followed by the t-SNE maps of the distribution of clusters, and the corresponding minimum

distance plot from ILS, for results using k-Means (Figures S1 and S2) and DBSCAN (Figures S3

and S4); then the results of the classification (learning curves and classification reports) obtained

using the random forest classifier (Figure S5, Table S1) and logistic regression (Figure S6, Table S2).

Finally a list of features in the atomic descriptor (Table S3) and crystallographic descriptor (Table

S4) are provided. The correlations between the features for both the atomic and crystallographic

descriptors are shown in Figure S6 and described in detail in Reference 2. The method used for

the original data generation is included at the end, and is described in detail in References 4 to 10.
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Algorithm 1 Iterative Label Spreading

Require: Original dataset X = {x1, x2, ..., xm}, xi ∈ Rn;

Ensure: The List of distance D; The indexes of distance order L

1: Initialize two empty lists L and D

2: Randomly choose a point from X into L, add 0 to D and remove it from X

3: repeat

4: Compute the all distance between labeled points and unlabeled points

5: Move the nearest unlabeled point to labeled points to L, add the distance to D and remove it from X

6: until X is empty

Algorithm 2 Tukey method

Require: Original dataset D = {x1, x2, ..., xm}, xi ∈ Rn; The set of original features F ; The tolerance of outliers n

Ensure: The set of the outliers index Oi

1: Initialize I as a empty set

2: for each f ∈ F do

3: Q1 is the first quartile of D[f ];

4: Q3 is the third quartile of D[f ];

5: Ro is the range of outlier: Ro = 1.5 ∗ (Q3 −Q1);

6: The outliers’ index for feature f , If is where D[f ] < Q1 −Ro or D[f ] > Q3 + Ro;

7: Append If in I

8: end for

9: Count the frequency of indexes in Oi. If the frequency > n, append this index in Oi

Algorithm 3 Remove linear correlation

Require: Original dataset D = {x1, x2, ..., xm}, xi ∈ Rn;

Ensure: A nonlinear correlation dataset D̂

1: Initialize D̂ as a empty set

2: for each x ∈ D do

3: Append x into D̂;

4: Compute the rank r of D̂;

5: if thenr < the number of features in D̂ or all entries in x are zero

6: Pop x from D̂

7: end if

8: end for
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(a)

(b)

Figure S1: Results of k-Means clustering with the atomic descriptor, showing (a) the distributions

of the clusters visualised with t-SNE, and (b) the minimum distance plot from ILS showing 11

clusters, and coloured by the k-Means cluster assignments.
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(a)

(b)

Figure S2: Results of k-Means clustering with the crystallographic descriptor, showing (a) the

distributions of the clusters visualised with t-SNE, and (b) the minimum distance plot from ILS

showing 11 clusters, and coloured by the k-Means cluster assignments.
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(a)

(b)

Figure S3: Results of DBSCAN clustering with the atomic descriptor, showing (a) the distributions

of the clusters visualised with t-SNE, and (b) the minimum distance plot from ILS showing 11

clusters, and coloured by the DBSCAN cluster assignments.

5



(a)

(b)

Figure S4: Results of DBSCAN clustering with the crystallographic descriptor, showing (a) the

distributions of the clusters visualised with t-SNE, and (b) the minimum distance plot from ILS

showing 11 clusters, and coloured by the DBSCAN cluster assignments.
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(a)

(b)

Figure S5: Results for the random forest classifier for (a) the atomic descriptor, and (b) the

crystallographic descriptor, with labels obtained from the agglomerative clustering.
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Table S1: Classification reports for the atomic and crystallographic descriptors from the random

forest classifier using labels from agglomerative clustering.

Atomic Descriptor Crystallographic Descriptor

Class Precision Recall F1-score Class Precision Recall F1-score

Class 1 0.91 0.93 0.92 Class 1 1.00 1.00 1.00

Class 2 1.00 1.00 1.00 Class 2 0.99 0.94 0.96

Class 3 0.94 0.92 0.93 Class 3 0.99 0.97 0.98

Class 4 0.96 0.97 0.97 Class 4 0.97 0.99 0.98

Class 5 0.98 0.98 0.98 Class 5 0.93 0.97 0.95

Class 6 0.98 1.00 0.99

Class 7 0.96 0.98 0.97

Class 8 0.89 0.95 0.92

Class 9 1.00 0.86 0.92

Class 10 0.96 0.96 0.96

Class 11 0.90 0.84 0.87
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Table S2: Classification reports for the atomic and crystallographic descriptors from the logistic

regression classifier using labels from agglomerative clustering.

Atomic Descriptor Crystallographic Descriptor

Class Precision Recall F1-score Class Precision Recall F1-score

Class 1 0.36 0.29 0.32 Class 1 0.92 0.93 v0.93

Class 2 0.27 0.09 0.13 Class 2 0.77 0.64 0.70

Class 3 0.31 0.27 0.29 Class 3 0.74 0.87 0.80

Class 4 0.30 0.29 0.30 Class 4 0.82 0.89 0.85

Class 5 0.49 0.78 0.60 Class 5 0.55 0.34 0.42

Class 6 0.00 0.00 0.00

Class 7 0.45 0.46 0.46

Class 8 0.29 0.52 0.37

Class 9 0.00 0.00 0.00

Class 10 0.71 0.71 0.71

Class 11 0.45 0.49 0.47
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(a)

(b)

Figure S6: Results for the logistic regression classifier for (a) the atomic descriptor, and (b) the

crystallographic descriptor, with labels obtained from the agglomerative clustering. Note that the

reduction in the training score with respect to the number of training instances is due to the

complicity of the training set increasing with size, but the complexity of the regression remaining

unchanged, results in a minor increase in under-fitting.
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Table S3: List of Features in the Atomic Descriptor

Feature Description

ID Unique identifier, filename ID.xyz

Au bulk Fraction of bulk atoms

Au surface Fraction of surface atoms

R min Nanoparticle radius minimum, Å

R max Nanoparticle radius maximum, Å

R diff Nanoparticle radius minimum, Å

R avg Nanoparticle radius average, Å

R std Nanoparticle radius standard deviation, Å

R skew Nanoparticle radius skewness, Å

R kurt Nanoparticle radius kurtosis, Å

S 100 Fraction of atoms located on (100) surfaces

S 111 Fraction of atoms located on (111) surfaces

S 110 Fraction of atoms located on (110) surfaces

S 311 Fraction of atoms located on (311) surfaces

Au coord total Order parameters, Average coordination number of all atoms

Au bulk coord Coordination statistics, Average coordination number of all bulk atoms

Au surface coord Coordination statistics, Average coordination number of all surface atoms

TCN 1 Coordination statistics, Fraction of atoms with coordination number 1

TCN 2 Coordination statistics, Fraction of atoms with coordination number 2

TCN 3 Coordination statistics, Fraction of atoms with coordination number 3

TCN 4 Coordination statistics, Fraction of atoms with coordination number 4

TCN 5 Coordination statistics, Fraction of atoms with coordination number 5

TCN 6 Coordination statistics, Fraction of atoms with coordination number 6

TCN 7 Coordination statistics, Fraction of atoms with coordination number 7

TCN 8 Coordination statistics, Fraction of atoms with coordination number 8

TCN 9 Coordination statistics, Fraction of atoms with coordination number 9

TCN 10 Coordination statistics, Fraction of atoms with coordination number 10

TCN 11 Coordination statistics, Fraction of atoms with coordination number 11

TCN 12 Coordination statistics, Fraction of atoms with coordination number 12

TCN 13 Coordination statistics, Fraction of atoms with coordination number 13

TCN 14 Coordination statistics, Fraction of atoms with coordination number 14

TCN 15 Coordination statistics, Fraction of atoms with coordination number 15

TCN 16 Coordination statistics, Fraction of atoms with coordination number 16

BCN 1 Coordination statistics, Fraction of bulk atoms with coordination number 1

BCN 2 Coordination statistics, Fraction of bulk atoms with coordination number 2

BCN 3 Coordination statistics, Fraction of bulk atoms with coordination number 3

BCN 4 Coordination statistics, Fraction of bulk atoms with coordination number 4

BCN 5 Coordination statistics, Fraction of bulk atoms with coordination number 5

BCN 6 Coordination statistics, Fraction of bulk atoms with coordination number 6

BCN 7 Coordination statistics, Fraction of bulk atoms with coordination number 7

BCN 8 Coordination statistics, Fraction of bulk atoms with coordination number 8

BCN 9 Coordination statistics, Fraction of bulk atoms with coordination number 9

BCN 10 Coordination statistics, Fraction of bulk atoms with coordination number 10

BCN 11 Coordination statistics, Fraction of bulk atoms with coordination number 11

BCN 12 Coordination statistics, Fraction of bulk atoms with coordination number 12

BCN 13 Coordination statistics, Fraction of bulk atoms with coordination number 13

Continued on next page
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Feature Description

BCN 14 Coordination statistics, Fraction of bulk atoms with coordination number 14

BCN 15 Coordination statistics, Fraction of bulk atoms with coordination number 15

BCN 16 Coordination statistics, Fraction of bulk atoms with coordination number 16

SCN 1 Coordination statistics, Fraction of surface atoms with coordination number 1

SCN 2 Coordination statistics, Fraction of surface atoms with coordination number 2

SCN 3 Coordination statistics, Fraction of surface atoms with coordination number 3

SCN 4 Coordination statistics, Fraction of surface atoms with coordination number 4

SCN 5 Coordination statistics, Fraction of surface atoms with coordination number 5

SCN 6 Coordination statistics, Fraction of surface atoms with coordination number 6

SCN 7 Coordination statistics, Fraction of surface atoms with coordination number 7

SCN 8 Coordination statistics, Fraction of surface atoms with coordination number 8

SCN 9 Coordination statistics, Fraction of surface atoms with coordination number 9

SCN 10 Coordination statistics, Fraction of surface atoms with coordination number 10

SCN 11 Coordination statistics, Fraction of surface atoms with coordination number 11

SCN 12 Coordination statistics, Fraction of surface atoms with coordination number 12

SCN 13 Coordination statistics, Fraction of surface atoms with coordination number 13

SCN 14 Coordination statistics, Fraction of surface atoms with coordination number 14

SCN 15 Coordination statistics, Fraction of surface atoms with coordination number 15

SCN 16 Coordination statistics, Fraction of surface atoms with coordination number 16
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Table S4: List of Features used in the Crystallographic Descriptor

Feature Description

ID Unique identifier, filename ID.xyz

Au bulk Fraction of bulk atoms

Au surface Fraction of surface atoms

R min Nanoparticle radius minimum, Å

R max Nanoparticle radius maximum, Å

R avg Nanoparticle radius average, Å

R std Nanoparticle radius standard deviation, Å

R skew Nanoparticle radius skewness, Å

R kurt Nanoparticle radius kurtosis, Å

Au-Au bonds Bonding statistics, Average bond length, Å

Au-Au stdev Bonding statistics, Standard Deviation of the bond length, Å

Au-Au-Au angle Bonding statistics, Average bond angle, Degrees

Au-Au-Au stdev Bonding statistics, Standard deviation of the bond angle, Degrees

FCC Lattice statistics, Fraction of atoms in face centred cubic (fcc) lattice

HCP Lattice statistics, Fraction of atoms in hexagonal closed packed (hcp) lattice

ICOS Lattice statistics, Fraction of atoms in icosahedral lattice

DECA Lattice statistics, Fraction of atoms in decahedral lattice

q6q6 total Order parameters, Average spherical harmonic (q6.q6 >0.7) for all atoms

q6q6 bulk Order parameters, Average spherical harmonic (q6.q6 >0.7) for all bulk atoms

q6q6 surf Order parameters, Average spherical harmonic (q6.q6 >0.7) for all surface atoms

q6q6 T0 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 0

q6q6 T1 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 1

q6q6 T2 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 2

q6q6 T3 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 3

q6q6 T4 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 4

q6q6 T5 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 5

q6q6 T6 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 6

q6q6 T7 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 7

q6q6 T8 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 8

q6q6 T9 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 9

q6q6 T10 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 10

q6q6 T11 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 11

q6q6 T12 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 12

q6q6 T13 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 13

q6q6 T14 Order parameters, Fraction of atoms with spherical harmonic (q6.q6 >0.7) of 14

q6q6 B0 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 0

q6q6 B1 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 1

q6q6 B2 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 2

q6q6 B3 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 3

q6q6 B4 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 4

q6q6 B5 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 5

q6q6 B6 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 6

q6q6 B7 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 7

q6q6 B8 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 8

q6q6 B9 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 9

q6q6 B10 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 10

Continued on next page
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Feature Description

q6q6 B11 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 11

q6q6 B12 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 12

q6q6 B13 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 13

q6q6 B14 Order parameters, Fraction of bulk atoms with spherical harmonic (q6.q6 >0.7) of 14

q6q6 S0 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 0

q6q6 S1 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 1

q6q6 S2 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 2

q6q6 S3 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 3

q6q6 S4 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 4

q6q6 S5 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 5

q6q6 S6 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 6

q6q6 S7 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 7

q6q6 S8 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 8

q6q6 S9 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 9

q6q6 S10 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 10

q6q6 S11 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 11

q6q6 S12 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 12

q6q6 S13 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 13

q6q6 S14 Order parameters, Fraction of surface atoms with spherical harmonic (q6.q6 >0.7) of 14
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Figure S7: Correlation matrix for the entire (combined) feature space provided with Reference [1],

and describe in detail in Reference [2], showing minimal correlations between the features of the

atomic and crystallographic descriptors.
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Original Data Generation

As mentioned in the main text, the data used in this study was not generated as part of this study.

Originally these nanoparticles were generated using a combination of traditional molecular dynam-

ics (MD) simulations and simple statistical data processing, to ensure the samples are physically

realistic, thermodynamically stable and characteristic of nanoparticles observed experimentally, but

guaranteed to be structurally unique.

The MD simulations of the growth process were originally performed by using the LAMMPS

code [3], using embedded atom method (EAM) to accurately describe Au–Au atomic interactions.

Under this scheme the total electronic density in a metal is approximated by a linear superposition

of contributions from individual atoms, so the electron density in the vicinity of each atom can be

expressed as the sum of the contributions given by the atom in question, plus the electron density

of all neighboring atoms. In this way, for a system consisting of n atoms, the expression to calculate

the energy could be written as:

Utot =
n∑
i

Gi(ρi) +
1

2

n∑
i=1

n∑
j=16=i

φij(Rij) (1)

where the first term is the embedded energy and the second term represent short-range pair po-

tential. Gi(ρi) represents the energy needed to embed an atom i in an electronic density given by

(ρ). (ρi) is the electronic density pattern in atom i due to all the other atoms in the system and is

defined as follows

ρi =
n∑

j=16=i

ρaj (Rij), (2)

where ρaj is the atomic electronic density with spherical distribution, contributed by the atom j.

The last term in equation 1, φij, represents the pair electrostatic interaction between ionic cores

and is calculated using the Coulomb law,

φij =
1

4πε0

Qi(r)Qj(r)

rij
(3)

where Q represents the effective charge.

In their raw form trajectories from MD simulations are not suitable for statistical analysis or

machine learning, since structures from temporally adjacent time-steps may or may not be signifi-

cantly different (such as those occupying a local minima before a transition state barrier could be

breached). Failure to eliminate redundant structures, or those that are statistically indistinguish-

able based on their energy or coordinate geometries, can result in an over representation of certain

types of structures which are an artefact of the simulation and not meaningful. For this reason it is

important to process the data to extract structures from the trajectory when they become statis-

tically different from the previous extraction. During this process unbound atoms, smaller clusters

or nanoparticles formed via secondary nucleation may also be removed, to restrict the ensemble

to primary nanoparticles at each extraction point. This simulated a kinetically-limited formation

process. In addition to this a set of ideal polyhedron a a variety of sizes was relaxed at a set of

finite temperatures to simulate a thermodynamically-limited formation process, and the data sets

combined. In this way an ensemble is created that is suitable for informatics. This technique has

been used to generate data sets of other metallic nanoparticles as well [5, 4, 6, 7, 8, 9, 10].
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