Proton-insertion-pseudocapacitance of tungsten bronze tunnel structure enhanced by transition metal ions anchoring

Siwei Zhao^[a], Chenlong Dong^[a], Fuqiang Huang*^{[a][b]}

^a Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.

^b State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China

* E-mail: huangfq@pku.edu.cn

Figure S1. (a) XRD results of WO₃ and WO₃-TM. (b) IR spectra of the as-prepared WO₃ and WO₃-Zn.

Figure S2. XRD of (a) W, (b) O and (c) Zn of WO₃-Zn with different ratios.

Figure S3. (a-g) The CV of WO₃ and derivates at different scan rates.

Figure S4. Optimized structure of WO_3 and WO_3 -TM with H_2O inside the channel. The ratio of WO_3 , TM and H_2O is determined by TGA and ICP.

Figure S5. DOS of WO₃-TM.

Table S1. ICP of WO₃-Zn. The designed ratio is Zn/WO₃ in atom during synthesis.

Samples	Designed	ICP
WO_3 - $Zn_0.2$	0.2	0.21
WO ₃ -Zn_1	1	0.41
WO ₃ -Zn_5	5	0.59