Supporting Information

Al₂O₃ Buffer-Facilitated Epitaxial Growth of High-Quality ZnO/ZnS Core/Shell Nanorod Arrays

Fan Ru, ^{a, b} Jing Xia, * ^a Xuanze Li ^a, Yifan Wang, ^{a, b} Ze Hua, ^c Ruiwen Shao ^d, Xuecong Wang, ^a Chun-Sing Lee, ^e Xiang-Min Meng*^a

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

E-mail of corresponding author: mengxiangmin@mail.ipc.ac.cn; xiajing@mail.ipc.ac.cn;

^bCentre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China.

^cAnalysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, P. R. China.

^dBeijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Convergence in Medicine and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China

•Center of Super-Diamond and Advanced Films (COSADF) and Department of Chemistry, City University of Hong Kong SAR, P.R. China.

Fig. S1. (a,b) Top-view and (c,d) tilt view of low- and high-magnification SEM images of the ZnO/ZnS core/shell nanorod arrays without Al₂O₃ buffer layer.

Fig. S2 (a) TEM image of the ZnO/ZnS core/shell nanorods with 2 nm Al_2O_3 as buffer layer. (b) Corresponding SAED pattern and (c) HRTEM image of (a). (d) ADF-STEM image and corresponding elemental mappings of the core/shell nanorod. (e) EDS line scan data from the core/shell heterostructure. (f) EDS line scan data corresponding to line A. The thickness of the Al_2O_3 is 1 nm.

Fig. S3 (a) TEM image of the cross-section sample. (b) Corresponding SAED pattern and (c) HRTEM image of (a), respectively. (d) and (e) Enlarged HRTEM images recorded from regions i and ii in (c), respectively. (f) ADF image with spectrum image of the core/shell heterostructure and EELS spectra obtained from the spectrum image.

Fig. S4 (a) TEM image of the cross-section sample. (b) Corresponding HRTEM and ADF-STEM images of (a), inset is the corresponding SAED pattern. (d) ADF image and corresponding elemental mappings of the core/shell heterostructure.

Fig. S5 XRD patterns of ZnO/ZnS core/shell nanorod arrays with different thicknesses of Al_2O_3 as buffer layer.

Fig. S6. HRTEM images of the obtained (a) 2 nm and (b) 4 nm Al_2O_3 -coated ZnO after heating, insets are corresponding SAED patterns.

Fig. S7. (a-d) HRTEM images of the obtained core-shell heterostructures (4 nm Al_2O_3 as buffer layer) at different growth stages. Note: the heterostructures shown in (a-d) were not recorded from the same one.

Fig. S8. I–V curves of diode consisting of core/shell heterostructure without Al_2O_3 in the dark (red) and in the presence of 365 nm illumination (blue), respectively.