Supporting Information

Ultrathin mesoporous graphitic carbon nitride nanosheets with functional cyano groups decoration and nitrogen vacancy defects for

efficient selective CO₂ photoreduction

Junyi Li ^{a, b, ‡}, Xiaohan Wang ^{a, ‡}, Liang Huang ^a, Liang Tian ^a, Menny Shalom ^b,

Chunyan Xiong ^c, Haijun Zhang ^{a, *}, Quanli Jia^d, Shaowei Zhang ^e, Feng Liang ^{a, *}

a The State Key Laboratory of Refractories and Metallurgy, Wuhan University of

Science and Technology, Wuhan 430081, China

b Department of Chemistry and Ilse Katz Institute for Nanoscale Science and

Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel

c School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology,

Wuhan 430074, China

d High Temperature Ceramic Institute, Zhengzhou University, Zhengzhou 450052,

PR China

e College of Engineering, Mathematics and Physical Sciences, University of Exeter,

Exeter Ex4 4QF, U.K.

* Corresponding author. Assoc. Prof. Feng Liang, E-mail: liangfengref@wust.edu.cn;
Prof. Haijun Zhang, E-mail: zhanghaijun@wust.edu.cn, Tel: +86-27-68862829
* These authors contributed equally to this work.

sample	S _{BET} (m²/g)	Pore	Pore	Elemental analysis (atom%)				
		volume	size					
		(cm ³ /g)	(nm)	С	Ν	Н	0	C/N
BCN	7.0	0.63	5.25	34.1	49.9	13.7	1.1	0.68
CNNS	512.6	1.72	8.95	23.3	32.0	31.5	13.1	0.73

Table S1 Textural parameters of nitrogen sorption analysis and elemental analysis for BCN and CNNS.

		BCN	CNNS		
C (at.%)	51.5%	C-C (16.3%) C-NH _x (x=1, 2) (14.0%) C=N (5.4 %) N=C-(N) ₂ (64.3%)	67.7%	C-C (64.5%) C-NH _x (5.6%) C=N (9.1%) N=C-(N) ₂ (20.8%)	
N (at.%)	41.7%	C=N-C (57.7%) N-(C) ₃ (24.1%) N-H (18.2%)	13.7%	C=N-C (55.1%) C ₃ -N (26.1%) C≡N (11.6%) N-H (7.2%)	
O (at.%)	6.8%	H ₂ O (88.9%) O ₂ (11.1%)	18.6%	H ₂ O (46.6%) O ₂ (53.4%)	

Table S2 Elemental compositions of BCN and CNNS based on XPS results.

		Rate		V
Photocatalysts	Conditions	(µmol·g ⁻¹ ·h ⁻¹)	References	Year
CNNG	H ₂ O, Xe lamp, 5 h	CH ₄ : 50.8/23.0,	CH ₄ : 50.8/23.0,	
CNNS	$(\lambda \ge 200 \text{ nm}/\lambda \ge 420 \text{ nm})$ CO: 5.1/1.9		I his work	
DCN	H ₂ O, Xe lamp, 5 h		This work	
BCN	$(\lambda \ge 200 \text{ nm}/\lambda \ge 420 \text{ nm})$	CO: 2.0/1.1		
	H O. Valamp 6 h	CH ₄ : 3.98,	[S1]	2018
N-CQDS-110 ₂	H_2O , xe lamp, 6 n	CO: 6.13	[~.]	2018
g-C-N.	H ₂ O, Xe lamp, 5 h	CH ₄ : 0.24,	[82]	2016
g-C3IN4	(λ> 200 nm)	CO: 2.1		
P dopod a C.N.	H ₂ O, Vis ($\lambda \ge 420$ nm),	CO: 2.37,	[83]	2018
	4 h	CH ₄ : 1.81	[]	
Co.O./CNS	H ₂ O, Xe lamp, 4 h	CO: 13.31,	[S4]	2020
C0304/CN5		CH ₄ : 3.17	L- J	2020
WO./g.C.N.	H ₂ O, UV (254≤λ< 420	CO: 14.60/1.37,	[85]	2020
w 03/g-C3114	nm)/Vis (λ≥420 nm), 4 h	CH ₄ : 10.37/0.75	[]	2020
Di A-Dr.	H ₂ O, Xe lamp, 2 h	CO: 3.16,	[86]	2019
DI4O5DF2		CH ₄ : 0.5	[20]	
Du/a C N	H ₂ O, Xe lamp, 4 h	CO: (4.78),	[\$7]	2019
NU/g-U3114	(420≤λ<780 nm)	CH ₄ : (0.78)	r~ , 1	2010

Table S3 Comparison of photocatalytic CO₂ reduction performance of various materials.

SpS /g C N	H_2O , Xe lamp, 4 h CH_4 : 0.6		[\$8]	2017
SIIS ₂ /g-C ₃ IV ₄	$(\lambda > 420 \text{ nm})$ CH ₃ OH: 2.3		[~~]	2017
DJO/T:O	II O UN light 2 h	CO: 0.12,	[89]	2010
	H_2O , OV light, 2 h	CH ₄ : 13.99	[07]	2019
O denod o C N	H_2O , Xe lamp		[\$10]	2017
O-doped g-C ₃ N ₄	(λ> 420 nm)	СП ₃ ОН: 0.88	[510]	2017
MnO ₂ /g-C ₃ N ₄	H ₂ O, Xe lamp, 6 h	CO: 3.4	[S11]	2017
NiO/g-C ₃ N ₄	H ₂ O, Xe lamp, 8 h	CO: 4.17	[\$12]	2018
Pt@Bi-TiO ₂	H ₂ O, Hg lamp, 10 h	CH ₄ : 2.06	[\$13]	2020
A/C N	II.O. Valama 2h	CO : 6.59,	[\$14]	2019
Au/C3N4	H_2O , Xe lamp, 2 h	CH ₄ : 1.55	[01.]	2018
Bi ₂ MoO ₆	H ₂ O, Xe lamp, 6 h	CO : 3.62	[\$15]	2019
Ni-Bi co-doped	H ₂ O, 250W Hg lamp,	CII - 2 11	[816]	2020
TiO ₂	10 h	СП4 : 2.11		2020

Figure S1 XPS wide spectra and high resolution O 1s XPS spectra of BCN and CNNS.

Figure S2 EPR spectra of BCN and CNNS.

Figure S3. Time-production plots of the CO and CH_4 generated form the photocatalytic CO_2 reduction over the BCN (left) and CNNS (right). (photocatalysis condition: 0.05 g photocatalysts, 5 mL H₂O, Light $\lambda \ge 200$ nm, 20°C)

Figure S4. The GC spectra of resulting O_2 after photocatalytic CO_2 -reduction reactions (visible-light-driven, $\lambda \ge 420$ nm) over CNNS.

Figure S5 CO₂, H₂O, CO, CH₄ adsorption geometry on BCN (a, c, e, and g) and CNNS with nitrogen vacancy and cyano group (b, d, f, and h).

Figure S6 Illustration of the experimental setup for photocatalytic CO₂ reduction.

References

[S1]Li M, Wang M, Zhu L, et al. Facile microwave assisted synthesis of N-rich carbon quantum dots/dual-phase TiO₂ heterostructured nanocomposites with high activity in CO₂photoreduction[J]. Applied Catalysis B: Environmental, 2018, 231: 269-276.

[S2]Wang H, Sun Z, Li Q, et al. Surprisingly advanced CO_2 photocatalytic conversion over thiourea derived g-C₃N₄ with water vapor while introducing 200–420 nm UV light[J]. Journal of CO2 Utilization, 2016, 14: 143-151.

[S3]Li M, Zhang L, Fan X, et al. Core-shell LaPO₄/g-C₃N₄ nanowires for highly active and selective CO₂ reduction[J]. Applied Catalysis B: Environmental, 2017, 201: 629-635.

[S4]Hangfan Ma X L, Shiying Fan , Zhifan Yin , Guoqiang Gan , Meichun Qin , Penglei Wang , Yaxuan Li , Lianzhou Wang In Situ Formation of Interfacial Defects between Co-Based SpinelCarbon Nitride Hybrids for Efficient CO₂ Photoreduction[J]. ACS Applied Energy Materials, 2020, 3(5): 5083–5094.

[S5]Li X, Song X, Ma C, et al. Direct Z-Scheme WO₃/Graphitic Carbon Nitride Nanocomposites for the Photoreduction of CO₂[J]. ACS Applied Nano Materials, 2020, 3(2): 1298-1306.

[S6]Jin X, Lv C, Zhou X, et al. A bismuth rich hollow Bi₄O₅Br₂ photocatalyst enables dramatic CO₂ reduction activity[J]. Nano Energy, 2019, 64: 103955.

[S7]Ye F, Wang F, Meng C, et al. Crystalline phase engineering on cocatalysts: A promising approach to enhancement on photocatalytic conversion of carbon dioxide

to fuels[J]. Applied Catalysis B: Environmental, 2018, 230: 145-153.

[S8]Di T, Zhu B, Cheng B, et al. A direct Z-scheme g-C₃N₄/SnS₂ photocatalyst with superior visible-light CO₂ reduction performance[J]. Journal of Catalysis, 2017, 352: 532-541.

[S9]Mekasuwandumrong O, Jantarasorn N, Panpranot J, et al. Synthesis of Cu/TiO₂ catalysts by reactive magnetron sputtering deposition and its application for photocatalytic reduction of CO₂ and H₂O to CH₄[J]. Ceramics International, 2019, 45(17): 22961-22971.

[S10] Fu J, Zhu B, Jiang C, et al. Hierarchical Porous O-Doped $g-C_3N_4$ with Enhanced Photocatalytic CO₂ Reduction Activity[J]. Small, 2017, 13(15).

[S11] Wang M, Shen M, Zhang L, et al. 2D-2D MnO₂/g-C₃N₄ heterojunction photocatalyst: In-situ synthesis and enhanced 2 reduction activity[J]. Carbon, 2017, 120: 23-31.

[S12] Tang J-y, Guo R-t, Zhou W-g, et al. Ball-flower like NiO/g-C₃N₄ heterojunction for efficient visible light photocatalytic CO_2 reduction[J]. Applied Catalysis B: Environmental, 2018, 237: 802-810.

[S13] Mohsen Moradi F K, Afsanehsadat Larimi Pt nanoparticles decorated Bidoped TiO₂ as an efficient photocatalyst for CO₂ photo-reduction into $CH_4[J]$. Solar Energy, 2020, 211: 100-110.

[S14] Li H, Gao Y, Xiong Z, et al. Enhanced selective photocatalytic reduction of CO_2 to CH_4 over plasmonic Au modified $g-C_3N_4$ photocatalyst under UV–vis light irradiation[J]. Applied Surface Science, 2018, 439: 552-559.

[S15] Jun Di X Z, Cheng Lian, Mengxia Ji, Jiexiang Xia, Jun Xiong, Wu Zhou, Xingzhong Cao, Yuanbin She, Honglai Liu, Kian Ping Loh, Stephen J. Pennycook, Huaming Li, Zheng Liu. Atomically-thin Bi₂MoO₆ nanosheets with vacancy pairs for improved photocatalytic CO₂ reduction[J]. Nano Energy, 2019, 61: 54-59.

[S16] Nematollahi R, Ghotbi C, Khorasheh F, et al. Ni-Bi co-doped TiO_2 as highly visible light response nano-photocatalyst for CO_2 photo-reduction in a batch photo-reactor[J]. Journal of CO_2 Utilization, 2020, 41.