Supporting Information

Molecular dynamics simulations to elucidate translocation and permeation of active from lipid nanoparticle to skin: complemented by experiments

Krishna M. Gupta*, Surajit Das, Pui Shan Chow

Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833

Fig. S1. Three-dimensional (3D) molecular structure of Gelucire[®] 50/13 which is a mixture of polyethylene glycol-32 (PEG-32) di-stearate and glyceryl di-stearate (close to supplier's information). Color code: O, red; C, cyan; H, white.

Fig. S2. Initial simulation snapshots for umbrella sampling simulations at few *z* locations of FA. For clear visualization, the skin bilayer is made transparent when FA molecule enters into skin.

Fig. S3: Autocorrelation functions of ΔF using 20 ns simulation trajectories at z locations corresponding to Fig. S2 without NP.

Fig. S4: Autocorrelation functions of ΔF using 20 ns simulation trajectories at z locations corresponding to Fig. S2 in the presence of NP.

Ingredients	% (w/w)
Gelucire [®] 50/13	10.0
Ferulic acid	0.5
Water	89.5

 Table S1: Composition of nanoparticle dispersion.

Fig. S5. Hydrogen-bonds between FA and NP as well as FA and skin.

Fig. S6. Resistance of permeation R(z) of FA along the skin bilayer normal with and without NP.