Electronic Supplementary Material

Highly sensitive and fast-response hydrogen sensing of WO_3 nanoparticles via palladium reined spillover effect

Zhengyou Zhu, "Xiaxia Xing, "Dongliang Feng, Zhenxu Li, Yingying Tian and Dachi Yang*

Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.

^{*} E-mail: yangdachi@nankai.edu.cn

[#] These authors (Z. Zhu and X. Xing) contributed equally to this study.

Outline

Experimental details

- Fig. S1 Recorded transitions of the reactant during the hydrolysis of WCl₆ ethanol solution.
- Fig. S2 Synthetic scheme of Pd-NPs@WO₃-NPs.
- Fig. S3 SEM images of precursor prior to annealing, WO₃-NPs and various Pd-NPs@WO₃-NPs.
- Fig. S4 XRD pattern of the hydrolysis product without annealing.
- Fig. S5 XRD patterns and photo images of WO₃-NPs and various Pd-NPs@WO₃-NPs.
- **Fig. S6** The EDS elemental mapping of Pd-NPs@WO₃-NPs with applied 25 μ M Pd²⁺ in the precursors.
- **Fig. S7.** The EDS elemental mapping of Pd-NPs@WO₃-NPs with applied 100 μ M Pd²⁺ in the precursors.
- **Fig. S8.** The EDS elemental mapping of Pd-NPs@WO₃-NPs with applied 150 μ M Pd²⁺ in the precursors.
- Fig. S9 XPS spectrum of WO₃-NPs and Pd-NPs@WO₃-NPs.
- Fig. S10 Hydrogen responses of various Pd-NPs@WO₃-NPs.
- Fig. S11 Response / recovery curve of WO₃-NPs after ageing process.
- Fig. S12 Mott-Schottky plots of WO₃-NPs and Pd-NPs@WO₃-NPs.
- **Table S1** Comparison of various hydrogen sensors based on precious metal decorated metal oxides.
- **Table S2** The H_2 and O_2 adsorption energy of the DFT calculation and comparison.

References

Experimental details

Synthesis of WO₃-NPs and Pd-NPs@WO₃-NPs

Pristine WO₃-NPs were synthesized by hydrolysis of WCl₆ in ethanol solution and subsequent pyrolysis treatment. Specifically, 0.8 g WCl₆ was firstly added into 160 mL ethanol under continuous sonication for 30 min to obtain a transparent yellow solution. Secondly, the above solution was aged for 48 h at near room temperature (25~30 °C, relative humidity of 60~70%). Thirdly, deep blue floccules formed in the beaker, which were subsequently collected by filtration and rinsed with ethanol and distilled water thoroughly, followed by drying at 60 °C for 2 h. Finally, WO₃-NPs were obtained by pyrolysis treatment to the blue powder via heating at 600 °C for 2 h in a muffle furnace (KSL1100X, Hefei Kejing Materials Technology Co. Ltd, China).

For the photochemical synthesis of Pd-NPs@WO₃-NPs, 50 mg as-prepared WO₃-NPs (powder) was dispersed in a mixture containing 80 mL deionized (D. I.) water and 20 mL methanol by sonication. Afterward, various volume (0.05, 0.1, 0.5, 1, 2, and 3 mL) of PdCl₂ (5 mM, dissolved by HCl assistance) aqueous solution was added, which was then UV-irradiated with irradiation distance of ~ 5 cm under stirring for 120 s by a Xenon light source (CEL-HXUV300, Beijing Zhongjiao Jinyuan Technology Co., Ltd). Finally, the precipitate was separated by filtrating and rinsing in D. I. water, followed by drying at 60 °C for 1 h. According to the feeding of PdCl₂ precursor, the Pd²⁺ concentrations were 2.5, 5, 25, 50, 100, 150 μM, respectively.

Characterizations

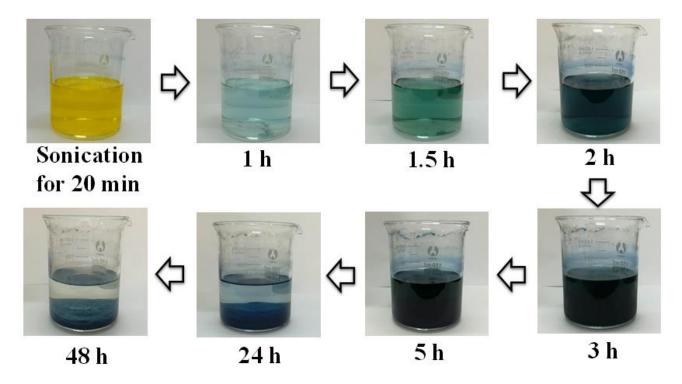
The samples of sensing materials were characterized using field emission scanning electron microscopy (FE-SEM, JEOL-6701F, at 2kV), transmission electron microscopy (TEM, JEM-2200FS) with high-resolution TEM (HRTEM) and selective area electron diffraction (SEAD) patterns, X-ray diffraction (XRD, Rigaku Smart Lab 3 kW) with Cu Kα radiation (2.2 kW) and X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi).

Hydrogen sensing measurements

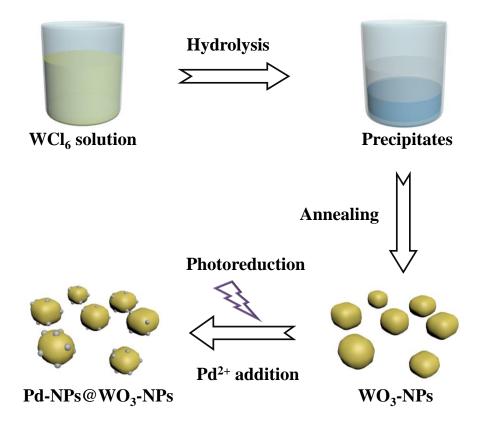
As-prepared samples were mixed with terpilenol to make a uniform paste. The paste was then coated on a ceramic tube printed with a pair of Au electrodes, followed by drying at 60 °C in an oven for 2 h. A Ni-Cr alloy wire was inserted into the tube to tune the working temperature. Hydrogen sensing test was carried out employing a static testing device (WS-30B system, Weisheng Instruments Co., Zhengzhou, China). The response of hydrogen is calculated by $S = R_g/R_a$, where R_g and R_a are the resistances in the target gas and air atmosphere, respectively. The response or recovery time is counted as the time taken by the sensor to reach 90% of the saturation signal after hydrogen in or hydrogen off. The ambient temperature and relative humidity during the test were 27 °C and ~70%, respectively. Prior to the test at 50 °C, the sensor was heated at 200 °C for 10 min cycling test to get activated.

Capacitance-voltage (C-V) test

Capacitance-voltage (C-V) test was carried out on the electrode/electrolyte at an electrochemistry workstation (VersaSTAT 4, AMETEK Princeton) to understand the Schottky contacts based on the Mott-Schottky equation, ^{1,2}


$$\frac{1}{C^2} = \frac{2}{N_D e \varepsilon_0 \epsilon} (E - E_{FB} - \frac{kT}{e})$$

where C is the space charge capacitance, N_D represents the carrier density, e is the elemental charge, ε_0 and ε are respectively denoted as the permittivity of the vacuum and the semiconductor, E is the applied potential, E_{FB} is the flat band potential, T is the temperature and k is the Boltzmann constant.


Theoretical modulation

Density functional theory (DFT) calculation was performed by using the CP2K package. ³ PBE functional ⁴ with Grimme D3 correction ⁵ was used to describe the system. Unrestricted Kohn-Sham DFT has been used as the electronic structure method in the framework of the Gaussian and plane waves method. ^{6,7} The Goedecker-Teter-Hutter (GTH) pseudopotentials, ^{8,9} DZVPMOLOPT-GTH basis sets ⁶ were utilized to describe the molecules. A plane-wave energy cut-off of 500 Ry has been employed. We used a unit cell of (4×4) with four atomic layers of WO₃ to model the surface. The

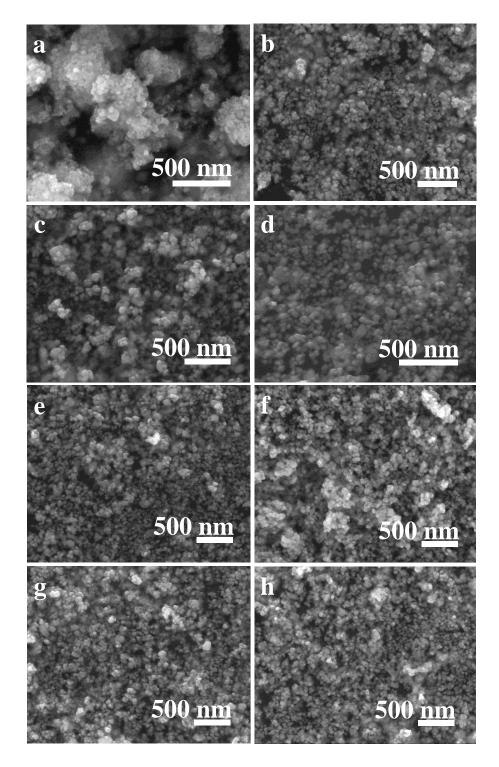
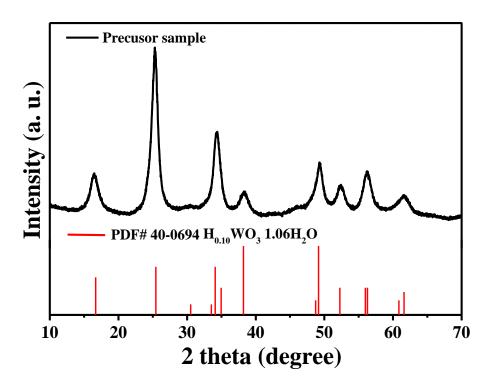
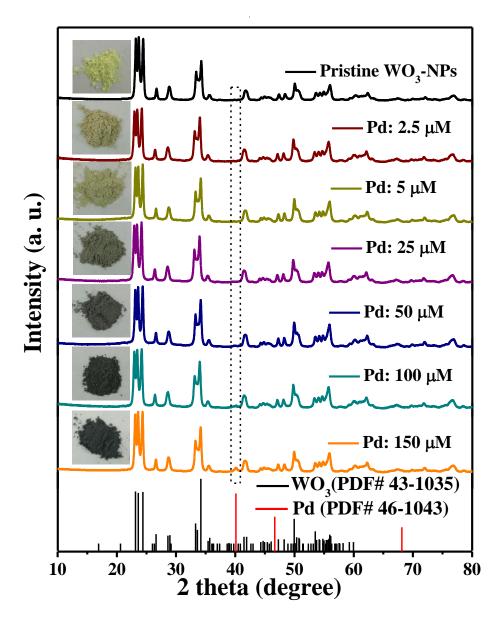
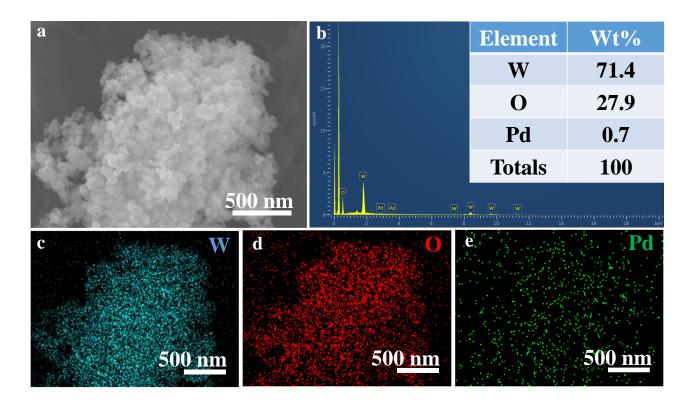
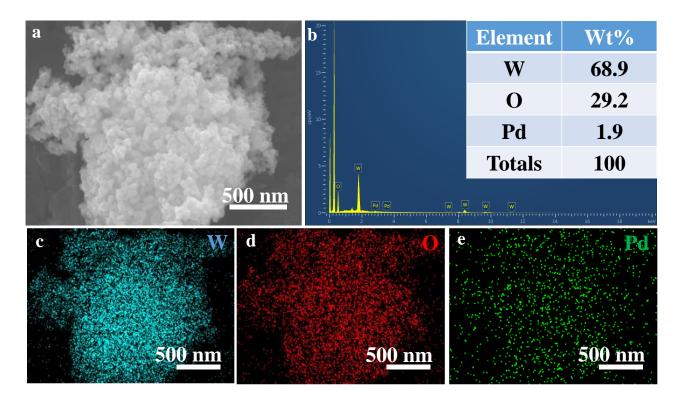

Pd-NPs@WO₃-NPs is modeled with Pd10 clusters on the WO₃ surface. All the simulations were carried out by keeping the two bottom WO₃ layers fixed at the initial coordinates in order to maintain the bulk behavior of the inner part of the slab. The adsorption energy is defined as $E_{ad} = E_{mol/sur} - E_{mol} - E_{sur}$, where E_{ad} is adsorption energy and $E_{mol/sur}$ is total energy for molecule on surface. E_{mol} and E_{sur} are the energy of isolated molecule and surface, respectively.

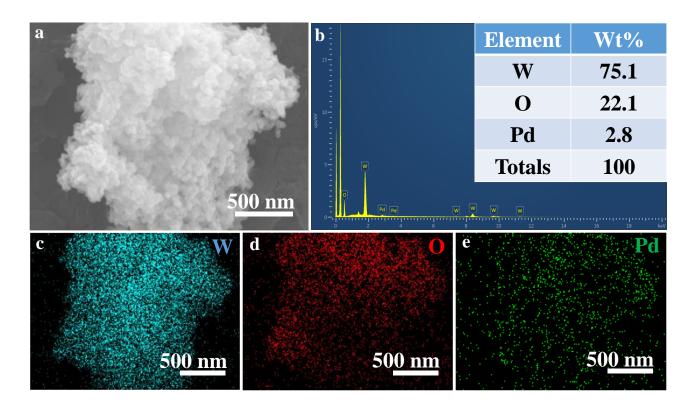
Fig. S1. Color transitions of the reactant during the hydrolysis of WCl₆ in ethanol solution at room temperature.

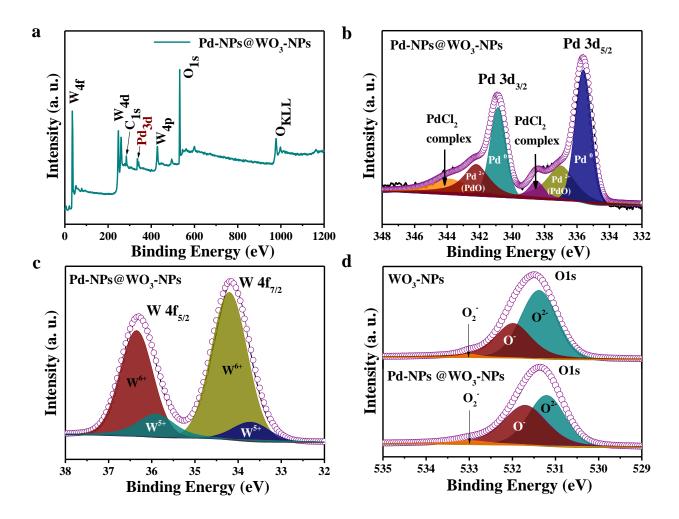
 $\textbf{Fig. S2.} \ \, \textbf{Synthetic} \ \, \textbf{scheme} \ \, \textbf{of} \ \, \textbf{Pd-NPs@WO_3-NPs} \ \, \textbf{via} \ \, \textbf{combined} \ \, \textbf{hydrolysis,} \ \, \textbf{annealing} \ \, \textbf{and} \ \, \textbf{photochemical deposition.}$

Fig. S3. The SEM images of the (a) precursor prior to annealing, (b) pristine WO₃-NPs, and Pd-NPs@WO₃-NPs containing various concentrations of Pd²⁺ in the precursors of (c) 2.5, (d) 5, (e) 25, (f) 50, (g) 100, (h) 150 μ M.


Fig. S4. XRD pattern of the hydrolysis product without annealing.


Fig. S5. XRD patterns and the corresponding photos of pristine WO₃-NPs and those containing with applied various concentrations of Pd^{2+} in the precursors.


Fig.S6 The EDS elemental mapping of Pd-NPs@WO₃-NPs with applied 25 μ M Pd²⁺ in the precursors.

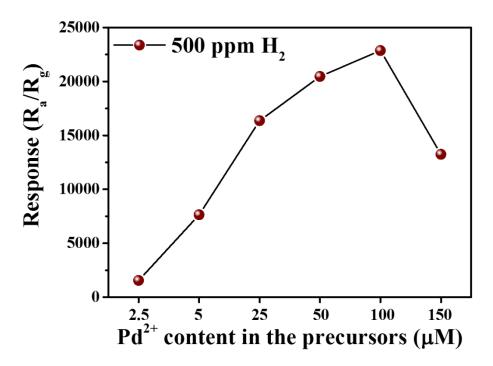

Fig. S7. The EDS elemental mapping of Pd-NPs@WO₃-NPs with applied 100 μ M Pd²⁺ in the precursors.

Fig. S8. The EDS elemental mapping of Pd-NPs@WO₃-NPs with applied 150 μ M Pd²⁺ in the precursors.

Fig. S9. (a) Survey scan XPS spectrum, (b) Pd 3d spectrum, (c) W 4f spectrum of Pd-NPs@WO₃-NPs, and (d) O 1s spectra of Pd-NPs@WO₃-NPs (Bottom-panel) with pristine WO₃-NPs (Top-panel) for comparison.

Fig. S10. Hydrogen response of the Pd-NPs@WO₃-NPs sensor to 500 ppm hydrogen with applied various concentrations of Pd²⁺ in the precursors.

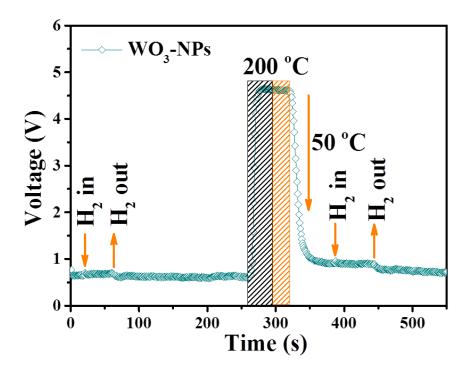
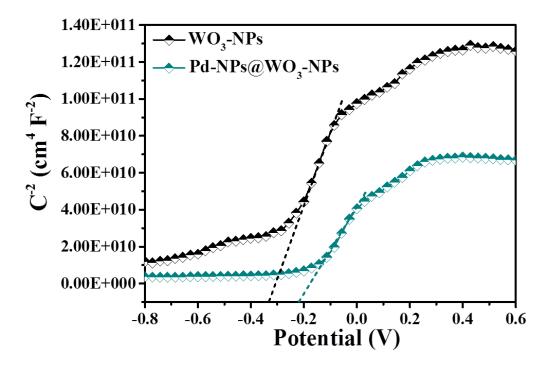



Fig. S11. Response / recovery curve of WO₃-NPs after ageing process.

Fig. S12. Mott-Schottky plots of WO₃-NP and Pd-NPs@WO₃-NPs.

Table S1 Comparison of various hydrogen sensors based on precious metal decorated metal oxides.

Materials/ Structures	Operating Temperature (°C)	Hydrogen response @concentration	Detection limit	Response/Rec overy Time	Refs.
Pt-In ₂ O ₃ nanocube	Room Temperature	~20 @1.5 vol%	0.5 vol%	33 s/ 66 s@ 1.5 vol%	10
Au@ZnO	200	103.9@100 ppm	0.5 ppm	75 s/ 600 s @100 ppm	11
nanoparticle	300				
Pt-SnO ₂ nanowire	100	118@1000ppm	100 ppm	-/-	12
Pd-SnO ₂ film	300	28@250 ppm	25 ppm	3 s/ 50 s@250	13
Pd-SnO ₂ nanowires	400	5.51@100 ppm	10 ppm	ppm 35 s/ 30 s@100 ppm	14
Pt-WO ₃ nanorod	200	~1600@150 ppm	100	~5.5 min/ ~15 min @ 3000 ppm	15
Pd-3DOM WO ₃	130	382@50 ppm	5 ppm	10 s/ 50 s @50 ppm	16
Pd-WO ₃ nanoplates	Room Temperature	34@ 0.1 vol%	0.05 vol%	54 s/ - @0.05 vol%	17
Pd-WO ₃ nanotubes	450	17.6@500 ppm	5 ppm	25 s/- @500 ppm	18
Pd-WO ₃ nanoplates	80	169.3@0.1 vol%	0.1 vol%	42.8 s/ 48.5 s@0.1 vol%	19
Pd-NPs@WO ₃ -NPs	~50	22867@500 ppm	5 ppm	1.2 s/ 5~99 s @500 ppm	This study

Table S2 The H_2 and O_2 adsorption energy of the DFT calcluation and comparison.

	O ₂ adsorption energy	H ₂ adsorption energy	
	$(E_{ad}) / eV$	$(E_{ad}) / eV$	
WO ₃ -NPs	-1.05	-2.8	
Pd-NPs@WO ₃ -NPs	-1.86	-0.53	

References

- 1. Z. Zhang, Y. Yu and P. Wang, *ACS Appl. Mater. Interfaces*, 2012, **4**, 990-996.
- 2. M. Ye, J. Gong, Y. Lai, C. Lin and Z. Lin, J. Am. Chem. Soc., 2012, 134, 15720-15723.
- 3. J. Hutter, M. Iannuzzi, F. Schiffmann and J. Vandevondele, *Wires. Comput. Mol. Sci.*, 2014, **4**, 15-25.
- 4. Y. Zhang and W. Yang, *Phys. Rev. Lett.*, 1998, **80**, 890-890.
- 5. S. Grimme, J. comput. Chem., 2006, 27, 1787-1799.
- 6. J. VandeVondele and J. Hutter, J. chem. Phy., 2007, 127, 114105.
- 7. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, *Comput. Phys. Commun.*, 2005, **167**, 103-128.
- 8. S. Goedecker, M. Teter and J. Hutter, *Phys. Rev. B*, 1996, **54**, 1703.
- 9. C. Hartwigsen, S. Godecker and J. Hutter, Phys. Rev. B, 1998, 58, 3641.
- 10. Y. Wang, B. Liu, D. Cai, L. Han, L. Yuan, D. Wang, L. Wang, Q. Li and T. Wang, *Sens. Actuators B Chem.*, 2014, **201**, 351-359.
- 11. S. M. Majhi, P. Rai and Y. T. Yu, ACS Appl. Mater. Interfaces, 2015, 7, 9462-9468.
- 12. Y. Shen, YAMAZAKI, Toshinari, Z. Liu, D. Meng, KIKUTA and Toshio, *J. Alloy. Compd.*, 2009, 488, L21-L25.
- 13. N. V. Toan, N. V. Chien, N. V. Duy, H. S. Hong, H. Nguyen, N. D. Hoa and N. V. Hieu, *J. Hazard. Mater.*, 2016, **301**, 433-442.
- 14. K. Nguyen, C. M. Hung, T. M. Ngoc, D. T. Thanh Le, D. H. Nguyen, D. Nguyen Van and H. Nguyen Van, *Sens. Actuators B Chem.*, 2017, **253**, 156-163.
- 15. M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong and V. Patthanasettakul, *ACS Appl. Mater. Interfaces*, 2014, **6**, 22051-22060.
- 16. Z. Wang, S. Huang, G. Men, D. Han and F. Gu, Sens. Actuators B Chem., 2018, 262, 577-587.
- 17. B. Liu, D. Cai, L. Yuan, D. Wang, L. Wang, Y. Wang, L. Han, Q. Li and T. Wang, *Sens. Actuators B Chem.*, 2014, **193**, 28-34.
- 18. S. J. Choi, S. Chattopadhyay, J. J. Kim, S. J. Kim, H. L. Tuller, G. C. Rutledge and I. D. Kim, *Nanoscale*, 2015, **8**, 9159.
- 19. Y. Wang, B. Liu, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, T. Wang and S. Xiao, *J. Mater. Chem. A*, 2014, **3**, 1317-1324.